
Splash Documentation
Release 3.5

Scrapinghub

May 05, 2022

Contents

1 Documentation 3
1.1 Installation . 3
1.2 Splash HTTP API . 6
1.3 Splash Scripts Tutorial . 18
1.4 Splash Lua API Overview . 24
1.5 Splash Scripts Reference . 26
1.6 Response Object . 67
1.7 Request Object . 69
1.8 Element Object . 71
1.9 Working with Binary Data . 87
1.10 Available Lua Libraries . 88
1.11 Splash and Jupyter . 95
1.12 FAQ . 97
1.13 Contributing to Splash . 102
1.14 Implementation Details . 103
1.15 Changes . 105

i

ii

Splash Documentation, Release 3.5

Splash is a javascript rendering service. It’s a lightweight web browser with an HTTP API, implemented in Python
3 using Twisted and QT5. The (twisted) QT reactor is used to make the service fully asynchronous allowing to take
advantage of webkit concurrency via QT main loop. Some of Splash features:

• process multiple webpages in parallel;

• get HTML results and/or take screenshots;

• turn OFF images or use Adblock Plus rules to make rendering faster;

• execute custom JavaScript in page context;

• write Lua browsing scripts;

• develop Splash Lua scripts in Splash-Jupyter Notebooks.

• get detailed rendering info in HAR format.

Contents 1

Splash Documentation, Release 3.5

2 Contents

CHAPTER 1

Documentation

1.1 Installation

1.1.1 Linux + Docker

1. Install Docker. Make sure Docker version >= 17 is installed.

2. Pull the image:

$ sudo docker pull scrapinghub/splash

3. Start the container:

$ sudo docker run -it -p 8050:8050 --rm scrapinghub/splash

4. Splash is now available at 0.0.0.0 at port 8050 (http).

1.1.2 OS X + Docker

1. Install Docker for Mac (see https://docs.docker.com/docker-for-mac/). Make sure Docker version >= 17 is
installed.

2. Pull the image:

$ docker pull scrapinghub/splash

3. Start the container:

$ docker run -it -p 8050:8050 --rm scrapinghub/splash

5. Splash is available at 0.0.0.0 address at port 8050 (http).

3

http://docker.io
http://docker.io
https://docs.docker.com/docker-for-mac/

Splash Documentation, Release 3.5

1.1.3 Splash Versions

docker pull scrapinghub/splash will give you the latest stable Splash release. To obtain the latest devel-
opment version use docker pull scrapinghub/splash:master. Specific Splash versions are also avail-
able, e.g. docker pull scrapinghub/splash:2.3.3.

1.1.4 Customizing Dockerized Splash

Passing Custom Options

To run Splash with custom options pass them to docker run, after the image name. For example, let’s increase log
verbosity:

$ docker run -p 8050:8050 scrapinghub/splash -v3

To see all possible options pass --help. Not all options will work the same inside Docker: changing ports doesn’t
make sense (use docker run options instead), and paths are paths in the container.

Folders Sharing

To set custom Request Filters use -v Docker option. First, create a folder with request filters on your local filesystem,
then make it available to the container:

$ docker run -p 8050:8050 -v <my-filters-dir>:/etc/splash/filters scrapinghub/splash

Replace <my-filters-dir> with a path of your local folder with request filters.

Docker Data Volume Containers can also be used. Check https://docs.docker.com/userguide/dockervolumes/ for more
info.

Proxy Profiles and Javascript Profiles can be added in a similar way:

$ docker run -p 8050:8050 \
-v <my-proxy-profiles-dir>:/etc/splash/proxy-profiles \
-v <my-js-profiles-dir>:/etc/splash/js-profiles \
scrapinghub/splash

To setup Adding Your Own Modules mount a folder to /etc/splash/lua_modules. If you use a Lua sandbox
(default) don’t forget to list safe modules using --lua-sandbox-allowed-modules option:

$ docker run -p 8050:8050 \
-v <my-lua-modules-dir>:/etc/splash/lua_modules \
scrapinghub/splash \
--lua-sandbox-allowed-modules 'module1;module2'

Warning: Folder sharing (-v option) may still have issues on OS X and Windows (see https://github.com/docker/
docker/issues/4023). If you have problems with volumes, use workarounds mentioned in issue comments or clone
Splash repo and customize its Dockerfile.

Building Local Docker Images

To build your own Docker image, checkout Splash source code using git, then execute the following command from
Splash source root:

4 Chapter 1. Documentation

https://docs.docker.com/userguide/dockervolumes/
https://github.com/docker/docker/issues/4023
https://github.com/docker/docker/issues/4023
https://github.com/scrapinghub/splash

Splash Documentation, Release 3.5

$ docker build -t my-local-splash .

To build Splash-Jupyter Docker image use this command:

$ docker build -t my-local-splash-jupyter -f dockerfiles/splash-jupyter/Dockerfile .

You may have to change FROM line in dockerfiles/splash-jupyter/Dockerfile if you want it to be
based on your local Splash Docker container.

Custom qtwebkit binaries

Pass URL of binaries archive in docker build argument, e.g.:

docker build \
--build-arg WEBKIT_URL=https://github.com/whalebot-helmsman/qtwebkit/releases/

→˓download/5.14.1-5.212.0-alpha-4/5.14.1-5.212.0-alpha-4.7z \
.

1.1.5 Custom qtwebkit build

You need a special container for this. There is one in Dockerfile for splash:

docker build --target qtwebkitbuilder-base . -t qtwebkit-builder

Checkout qtwebkit code and mount it to a build container:

git clone git@github.com:qtwebkit/qtwebkit.git ../qtwebkit
docker run --rm -it -v `pwd`/../qtwebkit:/qtwebkit qtwebkit-builder

To build qtwebkit from sources run next commands inside the container:

cd /qtwebkit
mkdir build
cd build
cmake -G Ninja -DPORT=Qt -DCMAKE_BUILD_TYPE=Release ..
ninja -j 8
ninja install
/tmp/create-package.sh install_manifest.txt '' 7z
7z l -ba build.7z | head -n 10

2020-05-29 13:57:20 D.... 0 0 include
2020-05-29 13:57:20 D.... 0 0 include/QtWebKit
2020-05-29 13:57:20 D.... 0 0 include/QtWebKit/5.212.0
2020-05-29 13:57:20 D.... 0 0 include/QtWebKit/5.212.0/

→˓QtWebKit
2020-05-29 13:57:20 D.... 0 0 include/QtWebKit/5.212.0/

→˓QtWebKit/private
2020-05-29 13:57:20 D.... 0 0 include/QtWebKitWidgets
2020-05-29 13:57:20 D.... 0 0 include/QtWebKitWidgets/5.

→˓212.0
2020-05-29 13:57:20 D.... 0 0 include/QtWebKitWidgets/5.

→˓212.0/QtWebKitWidgets
2020-05-29 13:57:20 D.... 0 0 include/QtWebKitWidgets/5.

→˓212.0/QtWebKitWidgets/private
2020-05-29 13:57:20 D.... 0 0 lib

1.1. Installation 5

Splash Documentation, Release 3.5

Make build.7z available by HTTP protocol. Assets files of release section on a github is a good place for this.

1.2 Splash HTTP API

Consult with Installation to get Splash up and running.

Splash is controlled via HTTP API. For all endpoints below parameters may be sent either as GET arguments or
encoded to JSON and POSTed with Content-Type: application/json header.

Most versatile endpoints that provide all Splash features are execute and run; they allow to execute arbitrary Lua
rendering scripts.

Other endpoints may be easier to use in specific cases - for example, render.png returns a screenshot in PNG format
that can be used as img src without any further processing, and render.json is convenient if you don’t need to interact
with a page.

1.2.1 render.html

Return the HTML of the javascript-rendered page.

Arguments:

url [string][required] The url to render (required)

baseurl [string][optional] The base url to render the page with.

Base HTML content will be fetched from the URL given in the url argument, while relative referenced resources
in the HTML-text used to render the page are fetched using the URL given in the baseurl argument as base. See
also: render.html result looks broken in a browser.

timeout [float][optional] A timeout (in seconds) for the render (defaults to 30).

By default, maximum allowed value for the timeout is 90 seconds. To override it start Splash with
--max-timeout command line option. For example, here Splash is configured to allow timeouts up to 5
minutes:

$ docker run -it -p 8050:8050 scrapinghub/splash --max-timeout 300

resource_timeout [float][optional] A timeout (in seconds) for individual network requests.

See also: splash:on_request and its request:set_timeout(timeout) method; splash.resource_timeout
attribute.

wait [float][optional] Time (in seconds) to wait for updates after page is loaded (defaults to 0). Increase this value if
you expect pages to contain setInterval/setTimeout javascript calls, because with wait=0 callbacks of setInter-
val/setTimeout won’t be executed. Non-zero wait is also required for PNG and JPEG rendering when doing
full-page rendering (see render_all).

Wait time must be less than timeout.

proxy [string][optional] Proxy profile name or proxy URL. See Proxy Profiles.

A proxy URL should have the following format: [protocol://
][user:password@]proxyhost[:port]

Where protocol is either http or socks5. If port is not specified, the port 1080 is used by default.

js [string][optional] Javascript profile name. See Javascript Profiles.

6 Chapter 1. Documentation

Splash Documentation, Release 3.5

js_source [string][optional] JavaScript code to be executed in page context. See Executing custom Javascript code
within page context.

filters [string][optional] Comma-separated list of request filter names. See Request Filters

allowed_domains [string][optional] Comma-separated list of allowed domain names. If present, Splash won’t load
anything neither from domains not in this list nor from subdomains of domains not in this list.

allowed_content_types [string][optional] Comma-separated list of allowed content types. If present, Splash will
abort any request if the response’s content type doesn’t match any of the content types in this list. Wildcards are
supported using the fnmatch syntax.

forbidden_content_types [string][optional] Comma-separated list of forbidden content types. If present, Splash will
abort any request if the response’s content type matches any of the content types in this list. Wildcards are
supported using the fnmatch syntax.

viewport [string][optional] View width and height (in pixels) of the browser viewport to render the web page. Format
is “<width>x<height>”, e.g. 800x600. Default value is 1024x768.

‘viewport’ parameter is more important for PNG and JPEG rendering; it is supported for all rendering endpoints
because javascript code execution can depend on viewport size.

For backward compatibility reasons, it also accepts ‘full’ as value; viewport=full is semantically equivalent
to render_all=1 (see render_all).

images [integer][optional] Whether to download images. Possible values are 1 (download images) and 0 (don’t
download images). Default is 1.

Note that cached images may be displayed even if this parameter is 0. You can also use Request Filters to strip
unwanted contents based on URL.

headers [JSON array or object][optional] HTTP headers to set for the first outgoing request.

This option is only supported for application/json POST requests. Value could be either a JSON array
with (header_name, header_value) pairs or a JSON object with header names as keys and header
values as values.

“User-Agent” header is special: it is used for all outgoing requests, unlike other headers.

body [string][optional] Body of HTTP POST request to be sent if method is POST. Default content-type header
for POST requests is application/x-www-form-urlencoded.

http_method [string][optional] HTTP method of outgoing Splash request. Default method is GET. Splash also sup-
ports POST.

save_args [JSON array or a comma-separated string][optional] A list of argument names to put in cache. Splash will
store each argument value in an internal cache and return X-Splash-Saved-Arguments HTTP header
with a list of SHA1 hashes for each argument (a semicolon-separated list of name=hash pairs):

name1=9a6747fc6259aa374ab4e1bb03074b6ec672cf99;
→˓name2=ba001160ef96fe2a3f938fea9e6762e204a562b3

Client can then use load_args parameter to pass these hashes instead of argument values. This is most useful
when argument value is large and doesn’t change often (js_source or lua_source are often good candidates).

load_args [JSON object or a string][optional] Parameter values to load from cache. load_args should be either
{"name": "<SHA1 hash>", ...} JSON object or a raw X-Splash-Saved-Arguments header
value (a semicolon-separated list of name=hash pairs).

For each parameter in load_args Splash tries to fetch the value from the internal cache using a provided
SHA1 hash as a key. If all values are in cache then Splash uses them as argument values and then handles the
request as usual.

1.2. Splash HTTP API 7

https://docs.python.org/3/library/fnmatch.html
https://docs.python.org/3/library/fnmatch.html

Splash Documentation, Release 3.5

If at least on argument can’t be found Splash returns HTTP 498 status code. In this case client should repeat
the request, but use save_args and send full argument values.

load_args and save_args allow to save network traffic by not sending large arguments with each request
(js_source and lua_source are often good candidates).

Splash uses LRU cache to store values; the number of entries is limited, and cache is cleared after each Splash
restart. In other words, storage is not persistent; client should be ready to re-send the arguments.

html5_media [integer][optional] Whether to enable HTML5 media (e.g. <video> tags playback). Possible values
are 1 (enable) and 0 (disable). Default is 0.

HTML5 media is currently disabled by default because it may cause instability. Splash may enable it by default
in future, so pass html5_media=0 explicitly if you don’t want HTML5 media.

See also: splash.html5_media_enabled.

http2 [integer][optional] Enable or disable HTTP2 support. Possible values are 1 (enable) and 0 (disable). Default
is 0. HTTP2 support is disabled by default as the current implementation can cause problems (e.g. network 399
errors).

engine [string][optional] Browser engine to use. Allowed values are webkit (default) and chromium.

Warning: engine=chromium is in pre-alpha stage: many features don’t work, there are known bugs,
including Splash crashes. Use on your own risk!

Allowed values also depend on Splash startup options: --browser-engines startup option can be used to
disable one of them. Start Splash with --browser-engines=webkit option to disallow Chromium.

Examples

Curl example:

curl 'http://localhost:8050/render.html?url=http://domain.com/page-with-javascript.
→˓html&timeout=10&wait=0.5'

The result is always encoded to utf-8. Always decode HTML data returned by render.html endpoint from utf-8 even if
there are tags like

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

in the result.

1.2.2 render.png

Return an image (in PNG format) of the javascript-rendered page.

Arguments:

Same as render.html plus the following ones:

width [integer][optional] Resize the rendered image to the given width (in pixels) keeping the aspect ratio.

height [integer][optional] Crop the rendered image to the given height (in pixels). Often used in conjunction with the
width argument to generate fixed-size thumbnails.

8 Chapter 1. Documentation

Splash Documentation, Release 3.5

render_all [int][optional] Possible values are 1 and 0. When render_all=1, extend the viewport to include the
whole webpage (possibly very tall) before rendering. Default is render_all=0.

Note: render_all=1 requires non-zero wait parameter. This is an unfortunate restriction, but it seems that
this is the only way to make rendering work reliably with render_all=1.

scale_method [string][optional] Possible values are raster (default) and vector. If scale_method=raster,
rescaling operation performed via width parameter is pixel-wise. If scale_method=vector, rescaling is
done element-wise during rendering.

Note: Vector-based rescaling is more performant and results in crisper fonts and sharper element boundaries,
however there may be rendering issues, so use it with caution.

Examples

Curl examples:

render with timeout
curl 'http://localhost:8050/render.png?url=http://domain.com/page-with-javascript.
→˓html&timeout=10'

320x240 thumbnail
curl 'http://localhost:8050/render.png?url=http://domain.com/page-with-javascript.
→˓html&width=320&height=240'

1.2.3 render.jpeg

Return an image (in JPEG format) of the javascript-rendered page.

Arguments:

Same as render.png plus the following ones:

quality [integer][optional] JPEG quality parameter in range from 0 to 100. Default is quality=75.

Note: quality values above 95 should be avoided; quality=100 disables portions of the JPEG compres-
sion algorithm, and results in large files with hardly any gain in image quality.

Examples

Curl examples:

render with default quality
curl 'http://localhost:8050/render.jpeg?url=http://domain.com/'

render with low quality
curl 'http://localhost:8050/render.jpeg?url=http://domain.com/&quality=30'

1.2. Splash HTTP API 9

Splash Documentation, Release 3.5

1.2.4 render.har

Return information about Splash interaction with a website in HAR format. It includes information about requests
made, responses received, timings, headers, etc.

You can use online HAR viewer to visualize information returned from this endpoint; it will be very similar to “Net-
work” tabs in Firefox and Chrome developer tools.

Request and response contents are included when ‘request_body’ and ‘response_body’ options are set to 1, respec-
tively.

Due to the HAR format specification lacking a method of encoding binary request data, a non-standard encoding
field is included in postData, which, similarly to the field of same name in HAR responses, has the value base64
when the request body has been encoded as such.

Arguments for this endpoint are the same as for render.html, plus the following:

request_body [int][optional] Possible values are 1 and 0. When request_body=1, request content is included in
HAR records. Default is request_body=0.

response_body [int][optional] Possible values are 1 and 0. When response_body=1, response content is in-
cluded in HAR records. Default is response_body=0.

1.2.5 render.json

Return a json-encoded dictionary with information about javascript-rendered webpage. It can include HTML, PNG
and other information, based on arguments passed.

Arguments:

Same as render.jpeg plus the following ones:

html [integer][optional] Whether to include HTML in output. Possible values are 1 (include) and 0 (exclude). Default
is 0.

png [integer][optional] Whether to include PNG in output. Possible values are 1 (include) and 0 (exclude). Default
is 0.

jpeg [integer][optional] Whether to include JPEG in output. Possible values are 1 (include) and 0 (exclude). Default
is 0.

iframes [integer][optional] Whether to include information about child frames in output. Possible values are 1 (in-
clude) and 0 (exclude). Default is 0.

script [integer][optional] Whether to include the result of the executed javascript final statement in output (see Exe-
cuting custom Javascript code within page context). Possible values are 1 (include) and 0 (exclude). Default is
0.

console [integer][optional] Whether to include the executed javascript console messages in output. Possible values
are 1 (include) and 0 (exclude). Default is 0.

history [integer][optional] Whether to include the history of requests/responses for webpage main frame. Possible
values are 1 (include) and 0 (exclude). Default is 0.

Use it to get HTTP status codes and headers. Only information about “main” requests/responses is returned (i.e.
information about related resources like images and AJAX queries is not returned). To get information about all
requests and responses use ‘har’ argument.

har [integer][optional] Whether to include HAR in output. Possible values are 1 (include) and 0 (exclude). Default
is 0. If this option is ON the result will contain the same data as render.har provides under ‘har’ key.

10 Chapter 1. Documentation

http://www.softwareishard.com/blog/har-12-spec/
http://www.softwareishard.com/har/viewer/
http://www.softwareishard.com/blog/har-12-spec/
http://www.softwareishard.com/blog/har-12-spec/

Splash Documentation, Release 3.5

By default, request and response contents are not included. To enable each, use ‘request_body’ and ‘re-
sponse_body’ options respectively.

request_body [int][optional] Possible values are 1 and 0. When request_body=1, request content is included in
HAR records. Default is request_body=0. This option has no effect when both ‘har’ and ‘history’ are 0.

response_body [int][optional] Possible values are 1 and 0. When response_body=1, response content is in-
cluded in HAR records. Default is response_body=0. This option has no effect when both ‘har’ and
‘history’ are 0.

Examples

By default, URL, requested URL, page title and frame geometry is returned:

{
"url": "http://crawlera.com/",
"geometry": [0, 0, 640, 480],
"requestedUrl": "http://crawlera.com/",
"title": "Crawlera"

}

Add ‘html=1’ to request to add HTML to the result:

{
"url": "http://crawlera.com/",
"geometry": [0, 0, 640, 480],
"requestedUrl": "http://crawlera.com/",
"html": "<!DOCTYPE html><!--[if IE 8]>....",
"title": "Crawlera"

}

Add ‘png=1’ to request to add base64-encoded PNG screenshot to the result:

{
"url": "http://crawlera.com/",
"geometry": [0, 0, 640, 480],
"requestedUrl": "http://crawlera.com/",
"png": "iVBORw0KGgoAAAAN...",
"title": "Crawlera"

}

Setting both ‘html=1’ and ‘png=1’ allows to get HTML and a screenshot at the same time - this guarantees that the
screenshot matches the HTML.

By adding “iframes=1” information about iframes can be obtained:

{
"geometry": [0, 0, 640, 480],
"frameName": "",
"title": "Scrapinghub | Autoscraping",
"url": "http://scrapinghub.com/autoscraping.html",
"childFrames": [

{
"title": "Tutorial: Scrapinghub's autoscraping tool - YouTube",
"url": "",
"geometry": [235, 502, 497, 310],
"frameName": "<!--framePath //<!--frame0-->-->",

(continues on next page)

1.2. Splash HTTP API 11

Splash Documentation, Release 3.5

(continued from previous page)

"requestedUrl": "http://www.youtube.com/embed/lSJvVqDLOOs?version=3&rel=1&
→˓fs=1&showsearch=0&showinfo=1&iv_load_policy=1&wmode=transparent",

"childFrames": []
}

],
"requestedUrl": "http://scrapinghub.com/autoscraping.html"

}

Note that iframes can be nested.

Pass both ‘html=1’ and ‘iframes=1’ to get HTML for all iframes as well as for the main page:

{
"geometry": [0, 0, 640, 480],
"frameName": "",
"html": "<!DOCTYPE html...",
"title": "Scrapinghub | Autoscraping",
"url": "http://scrapinghub.com/autoscraping.html",
"childFrames": [

{
"title": "Tutorial: Scrapinghub's autoscraping tool - YouTube",
"url": "",
"html": "<!DOCTYPE html>...",
"geometry": [235, 502, 497, 310],
"frameName": "<!--framePath //<!--frame0-->-->",
"requestedUrl": "http://www.youtube.com/embed/lSJvVqDLOOs?version=3&rel=1&

→˓fs=1&showsearch=0&showinfo=1&iv_load_policy=1&wmode=transparent",
"childFrames": []

}
],
"requestedUrl": "http://scrapinghub.com/autoscraping.html"

}

Unlike ‘html=1’, ‘png=1’ does not affect data in childFrames.

When executing JavaScript code (see Executing custom Javascript code within page context) add the parameter
‘script=1’ to the request to include the code output in the result:

{
"url": "http://crawlera.com/",
"geometry": [0, 0, 640, 480],
"requestedUrl": "http://crawlera.com/",
"title": "Crawlera",
"script": "result of script..."

}

The JavaScript code supports the console.log() function to log messages. Add ‘console=1’ to the request to include
the console output in the result:

{
"url": "http://crawlera.com/",
"geometry": [0, 0, 640, 480],
"requestedUrl": "http://crawlera.com/",
"title": "Crawlera",
"script": "result of script...",
"console": ["first log message", "second log message", ...]

}

12 Chapter 1. Documentation

Splash Documentation, Release 3.5

Curl examples:

full information
curl 'http://localhost:8050/render.json?url=http://domain.com/page-with-iframes.html&
→˓png=1&html=1&iframes=1'

HTML and meta information of page itself and all its iframes
curl 'http://localhost:8050/render.json?url=http://domain.com/page-with-iframes.html&
→˓html=1&iframes=1'

only meta information (like page/iframes titles and urls)
curl 'http://localhost:8050/render.json?url=http://domain.com/page-with-iframes.html&
→˓iframes=1'

render html and 320x240 thumbnail at once; do not return info about iframes
curl 'http://localhost:8050/render.json?url=http://domain.com/page-with-iframes.html&
→˓html=1&png=1&width=320&height=240'

Render page and execute simple Javascript function, display the js output
curl -X POST -H 'content-type: application/javascript' \

-d 'function getAd(x){ return x; } getAd("abc");' \
'http://localhost:8050/render.json?url=http://domain.com&script=1'

Render page and execute simple Javascript function, display the js output and the
→˓console output
curl -X POST -H 'content-type: application/javascript' \

-d 'function getAd(x){ return x; }; console.log("some log"); console.log("another
→˓log"); getAd("abc");' \

'http://localhost:8050/render.json?url=http://domain.com&script=1&console=1'

1.2.6 execute

Execute a custom rendering script and return a result.

render.html, render.png, render.jpeg, render.har and render.json endpoints cover many common use cases, but some-
times they are not enough. This endpoint allows to write custom Splash Scripts.

Arguments:

lua_source [string][required] Browser automation script. See Splash Scripts Tutorial for more info.

timeout [float][optional] Same as ‘timeout’ argument for render.html.

allowed_domains [string][optional] Same as ‘allowed_domains’ argument for render.html.

proxy [string][optional] Same as ‘proxy’ argument for render.html.

filters [string][optional] Same as ‘filters’ argument for render.html.

save_args [JSON array or a comma-separated string][optional] Same as ‘save_args’ argument for render.html. Note
that you can save not only default Splash arguments, but any other parameters as well.

load_args [JSON object or a string][optional] Same as ‘load_args’ argument for render.html. Note that you can load
not only default Splash arguments, but any other parameters as well.

You can pass any other arguments. All arguments passed to execute endpoint are available in a script in splash.args
table.

1.2. Splash HTTP API 13

Splash Documentation, Release 3.5

1.2.7 run

This endpoint is the same as execute, but it wraps lua_source in function main(splash, args) ...
end automatically. For example, if you’re sending this script to execute:

function main(splash, args)
assert(splash:go(args.url))
assert(splash:wait(1.0))
return splash:html()

end

equivalent script for run endpoint would be

assert(splash:go(args.url))
assert(splash:wait(1.0))
return splash:html()

1.2.8 Executing custom Javascript code within page context

Note: See also: executing JavaScript in Splash scripts

Splash supports executing JavaScript code within the context of the page. The JavaScript code is executed after the
page finished loading (including any delay defined by ‘wait’) but before the page is rendered. This allows to use the
javascript code to modify the page being rendered.

To execute JavaScript code use js_source parameter. It should contain JavaScript code to be executed.

Note that browsers and proxies limit the amount of data that can be sent using GET, so it is a good idea to use
content-type: application/json POST request.

Curl example:

Render page and modify its title dynamically
curl -X POST -H 'content-type: application/json' \

-d '{"js_source": "document.title=\"My Title\";", "url": "http://example.com"}' \
'http://localhost:8050/render.html'

Another way to do it is to use a POST request with the content-type set to ‘application/javascript’. The body of the
request should contain the code to be executed.

Curl example:

Render page and modify its title dynamically
curl -X POST -H 'content-type: application/javascript' \

-d 'document.title="My Title";' \
'http://localhost:8050/render.html?url=http://domain.com'

To get the result of a javascript function executed within page context use render.json endpoint with script = 1 param-
eter.

Javascript Profiles

Splash supports “javascript profiles” that allows to preload javascript files. Javascript files defined in a profile are
executed after the page is loaded and before any javascript code defined in the request.

14 Chapter 1. Documentation

Splash Documentation, Release 3.5

The preloaded files can be used in the user’s POST’ed code.

To enable javascript profiles support, run splash server with the --js-profiles-path=<path to a folder
with js profiles> option:

python3 -m splash.server --js-profiles-path=/etc/splash/js-profiles

Note: See also: Splash Versions.

Then create a directory with the name of the profile and place inside it the javascript files to load (note they must be
utf-8 encoded). The files are loaded in the order they appear in the filesystem. Directory example:

/etc/splash/js-profiles/
mywebsite/

lib1.js

To apply this javascript profile add the parameter js=mywebsite to the request:

curl -X POST -H 'content-type: application/javascript' \
-d 'myfunc("Hello");' \
'http://localhost:8050/render.html?js=mywebsite&url=http://domain.com'

Note that this example assumes that myfunc is a javascript function defined in lib1.js.

Javascript Security

If Splash is started with --js-cross-domain-access option

$ docker run -it -p 8050:8050 scrapinghub/splash --js-cross-domain-access

then javascript code is allowed to access the content of iframes loaded from a security origin different to the original
page (browsers usually disallow that). This feature is useful for scraping, e.g. to extract the html of a iframe page. An
example of its usage:

curl -X POST -H 'content-type: application/javascript' \
-d 'function getContents(){ var f = document.getElementById("external"); return f.

→˓contentDocument.getElementsByTagName("body")[0].innerHTML; }; getContents();' \
'http://localhost:8050/render.html?url=http://domain.com'

The javascript function ‘getContents’ will look for a iframe with the id ‘external’ and extract its html contents.

Note that allowing cross origin javascript calls is a potential security issue, since it is possible that secret information
(i.e cookies) is exposed when this support is enabled; also, some websites don’t load when cross-domain security is
disabled, so this feature is OFF by default.

1.2.9 Request Filters

Splash supports filtering requests based on Adblock Plus rules. You can use filters from EasyList to remove ads and
tracking codes (and thus speedup page loading), and/or write filters manually to block some of the requests (e.g. to
prevent rendering of images, mp3 files, custom fonts, etc.)

To activate request filtering support start splash with --filters-path option:

1.2. Splash HTTP API 15

https://adblockplus.org/
https://easylist.adblockplus.org/en/

Splash Documentation, Release 3.5

python3 -m splash.server --filters-path=/etc/splash/filters

Note: See also: Splash Versions.

The folder --filters-path points to should contain .txt files with filter rules in Adblock Plus format. You may
download easylist.txt from EasyList and put it there, or create .txt files with your own rules.

For example, let’s create a filter that will prevent custom fonts in ttf and woff formats from loading (due to qt bugs
they may cause splash to segfault on Mac OS X):

! put this to a /etc/splash/filters/nofonts.txt file
! comments start with an exclamation mark

.ttf|

.woff|

To use this filter in a request add filters=nofonts parameter to the query:

curl 'http://localhost:8050/render.png?url=http://domain.com/page-with-fonts.html&
→˓filters=nofonts'

You can apply several filters; separate them by comma:

curl 'http://localhost:8050/render.png?url=http://domain.com/page-with-fonts.html&
→˓filters=nofonts,easylist'

If default.txt file is present in --filters-path folder it is used by default when filters argument is not
specified. Pass filters=none if you don’t want default filters to be applied.

Only related resources are filtered out by request filters; ‘main’ page loading request can’t be blocked this way. If you
really want to do that consider checking URL against Adblock Plus filters before sending it to Splash (e.g. for Python
there is adblockparser library).

To learn about Adblock Plus filter syntax check these links:

• https://adblockplus.org/en/filter-cheatsheet

• https://adblockplus.org/en/filters

Splash doesn’t support full Adblock Plus filters syntax, there are some limitations:

• element hiding rules are not supported; filters can prevent network request from happening, but they can’t hide
parts of an already loaded page;

• only domain option is supported.

Unsupported rules are silently discarded.

Note: If you want to stop downloading images check ‘images’ parameter. It doesn’t require URL-based filters to
work, and it can filter images that are hard to detect using URL-based patterns.

Warning: It is very important to have pyre2 library installed if you are going to use filters with a large number of
rules (this is the case for files downloaded from EasyList).

16 Chapter 1. Documentation

https://easylist.adblockplus.org/en/
https://github.com/scrapinghub/adblockparser
https://adblockplus.org/en/filter-cheatsheet
https://adblockplus.org/en/filters
https://github.com/axiak/pyre2
https://easylist.adblockplus.org/en/

Splash Documentation, Release 3.5

Without pyre2 library splash (via adblockparser) relies on re module from stdlib, and it can be 1000x+ times slower
than re2 - it may be faster to download files than to discard them if you have a large number of rules and don’t use
re2. With re2 matching becomes very fast.

Make sure you are not using re2==0.2.20 installed from PyPI (it is broken); use the latest version.

1.2.10 Proxy Profiles

Splash supports “proxy profiles” that allows to set proxy handling rules per-request using proxy parameter.

To enable proxy profiles support, run splash server with --proxy-profiles-path=<path to a folder
with proxy profiles> option:

python3 -m splash.server --proxy-profiles-path=/etc/splash/proxy-profiles

Note: If you run Splash using Docker, check Folders Sharing.

Then create an INI file with “proxy profile” config inside the specified folder, e.g. /etc/splash/
proxy-profiles/mywebsite.ini. Example contents of this file:

[proxy]

; required
host=proxy.crawlera.com
port=8010

; optional, default is no auth
username=username
password=password

; optional, default is HTTP. Allowed values are HTTP and SOCKS5
type=HTTP

[rules]
; optional, default ".*"
allowlist=

.*mywebsite\.com.*

; optional, default is no denylist
denylist=

.*\.js.*

.*\.css.*

.*\.png

allowlist and denylist are newline-separated lists of regexes. If URL matches one of the allowlist patterns and
matches none of the denylist patterns, the proxy specified in the [proxy] section is used; no proxy is used otherwise.

Then, to apply proxy rules according to this profile, add proxy=mywebsite parameter to request:

curl 'http://localhost:8050/render.html?url=http://mywebsite.com/page-with-javascript.
→˓html&proxy=mywebsite'

If default.ini profile is present, it will be used when proxy argument is not specified. If you have default.
ini profile but don’t want to apply it pass none as proxy value.

1.2. Splash HTTP API 17

https://github.com/scrapinghub/adblockparser

Splash Documentation, Release 3.5

1.2.11 Other Endpoints

_gc

To reclaim some RAM send a POST request to the /_gc endpoint:

curl -X POST http://localhost:8050/_gc

It runs the Python garbage collector and clears internal WebKit caches.

_debug

To get debug information about Splash instance (max RSS used, number of used file descriptors, active requests,
request queue length, counts of alive objects) send a GET request to the /_debug endpoint:

curl http://localhost:8050/_debug

_ping

To ping Splash instance send a GET request to the /_ping endpoint:

curl http://localhost:8050/_ping

It returns “ok” status and max RSS used, if instance is alive.

1.3 Splash Scripts Tutorial

1.3.1 Intro

Splash can execute custom rendering scripts written in the Lua programming language. This allows us to use Splash
as a browser automation tool similar to PhantomJS.

To execute a script and get the result back send it to the execute (or run) endpoint in a lua_source argument. We’ll be
using execute endpoint in this tutorial.

Note: Most likely you’ll be able to follow Splash scripting examples even without knowing Lua; nevertheless, the
language is worth learning. With Lua you can, for example, write Redis, Nginx, Apache, World of Warcraft scripts,
create mobile apps using Corona or use the state of the art Deep Learning framework Torch7. It is easy to get started
and there are good online resources available like the tutorial Learn Lua in 15 minutes and the book Programming in
Lua.

Let’s start with a basic example:

function main(splash, args)
splash:go("http://example.com")
splash:wait(0.5)
local title = splash:evaljs("document.title")
return {title=title}

end

18 Chapter 1. Documentation

http://www.lua.org/
http://phantomjs.org/
http://redis.io/commands/EVAL
https://github.com/openresty/lua-nginx-module
http://httpd.apache.org/docs/trunk/mod/mod_lua.html
http://www.wowwiki.com/Lua
https://coronalabs.com/
http://torch.ch/
http://tylerneylon.com/a/learn-lua/
http://www.lua.org/pil/contents.html
http://www.lua.org/pil/contents.html

Splash Documentation, Release 3.5

If we submit this script to the execute endpoint in a lua_source argument, Splash will go to the example.com
website, wait until it loads, wait another half-second, then get the page title (by evaluating a JavaScript snippet in page
context), and then return the result as a JSON encoded object.

Note: Splash UI provides an easy way to try scripts: there is a code editor for Lua and a button to submit a script to
execute. Visit http://127.0.0.1:8050/ (or whatever host/port Splash is listening to).

To run scripts from your programming environment you need to figure out how to send HTTP requests. Check How
to send requests to Splash HTTP API? FAQ section - it contains recipes for some of the common setupts (e.g. Python
+ requests library).

1.3.2 Entry Point: the “main” Function

The script must provide a “main” function which is called by Splash. The result is returned as an HTTP response. The
script could contain other helper functions and statements, but ‘main’ is required.

In the first example ‘main’ function returned a Lua table (an associative array similar to JavaScript Object or Python
dict). Such results are returned as JSON.

The following will return the string {"hello":"world!"} as an HTTP response:

function main(splash)
return {hello="world!"}

end

The script can also return a string:

function main(splash)
return 'hello'

end

Strings are returned as-is (unlike tables they are not encoded to JSON). Let’s check it with curl:

$ curl 'http://127.0.0.1:8050/execute?lua_source=function+main%28splash%29%0D
→˓%0A++return+%27hello%27%0D%0Aend'
hello

The “main” function receives an object that allows us to control the “browser tab”. All Splash features are exposed
using this object. By convention, this argument is called “splash”, but you are not required to follow this convention:

function main(please)
please:go("http://example.com")
please:wait(0.5)
return "ok"

end

1.3.3 Where Are My Callbacks?

Here is a snippet from our first example:

splash:go("http://example.com")
splash:wait(0.5)
local title = splash:evaljs("document.title")

1.3. Splash Scripts Tutorial 19

http://127.0.0.1:8050/

Splash Documentation, Release 3.5

The code looks like standard procedural code; there are no callbacks or fancy control-flow structures. It doesn’t mean
Splash works in a synchronous way; under the hood it is still async. When you call splash:wait(0.5), Splash
switches from the script to other tasks, and comes back after 0.5s.

It is possible to use loops, conditional statements, functions as usual in Splash scripts which enables more straightfor-
ward coding.

Let’s check an example PhantomJS script:

// Render Multiple URLs to file

"use strict";
var RenderUrlsToFile, arrayOfUrls, system;

system = require("system");

/*
Render given urls
@param array of URLs to render
@param callbackPerUrl Function called after finishing each URL, including the last URL
@param callbackFinal Function called after finishing everything

*/
RenderUrlsToFile = function(urls, callbackPerUrl, callbackFinal) {

var getFilename, next, page, retrieve, urlIndex, webpage;
urlIndex = 0;
webpage = require("webpage");
page = null;
getFilename = function() {

return "rendermulti-" + urlIndex + ".png";
};
next = function(status, url, file) {

page.close();
callbackPerUrl(status, url, file);
return retrieve();

};
retrieve = function() {

var url;
if (urls.length > 0) {

url = urls.shift();
urlIndex++;
page = webpage.create();
page.viewportSize = {

width: 800,
height: 600

};
page.settings.userAgent = "Phantom.js bot";
return page.open("http://" + url, function(status) {

var file;
file = getFilename();
if (status === "success") {

return window.setTimeout((function() {
page.render(file);
return next(status, url, file);

}), 200);
} else {

return next(status, url, file);
}

});

(continues on next page)

20 Chapter 1. Documentation

https://github.com/ariya/phantomjs/blob/master/examples/render_multi_url.js

Splash Documentation, Release 3.5

(continued from previous page)

} else {
return callbackFinal();

}
};
return retrieve();

};

arrayOfUrls = null;

if (system.args.length > 1) {
arrayOfUrls = Array.prototype.slice.call(system.args, 1);

} else {
console.log("Usage: phantomjs render_multi_url.js [domain.name1, domain.name2, ...

→˓]");
arrayOfUrls = ["www.google.com", "www.bbc.co.uk", "phantomjs.org"];

}

RenderUrlsToFile(arrayOfUrls, (function(status, url, file) {
if (status !== "success") {

return console.log("Unable to render '" + url + "'");
} else {

return console.log("Rendered '" + url + "' at '" + file + "'");
}

}), function() {
return phantom.exit();

});

The code is (arguably) tricky: RenderUrlsToFile function implements a loop by creating a chain of callbacks;
page.open callback doesn’t return a value (it would be more complex to implement) - the result is saved on disk.

A similar Splash script:

function main(splash, args)
splash:set_viewport_size(800, 600)
splash:set_user_agent('Splash bot')
local example_urls = {"www.google.com", "www.bbc.co.uk", "scrapinghub.com"}
local urls = args.urls or example_urls
local results = {}
for _, url in ipairs(urls) do
local ok, reason = splash:go("http://" .. url)
if ok then

splash:wait(0.2)
results[url] = splash:png()

end
end
return results

end

It is not doing exactly the same work - instead of saving screenshots to files we’re returning PNG data to the client via
HTTP API.

Observations:

• instead of a page.open callback which receives “status” argument there is a “blocking” splash:go call which
returns “ok” flag;

• we’re using a standard Lua for loop without a need to create a recursive callback chain;

• some Lua knowledge is helpful to be productive in Splash Scripts: ipairs or string concatenation via ..

1.3. Splash Scripts Tutorial 21

Splash Documentation, Release 3.5

could be unfamiliar;

• error handling is different: in case of an HTTP 4xx or 5xx error PhantomJS doesn’t return an error code to
page.open callback - example script will get a screenshot nevertheless because “status” won’t be “fail”; in
Splash this error will be detected;

• instead of console messages and local files we’ve created a JSON HTTP API;

• apparently, PhantomJS allows to create multiple page objects and run several page.open requests in parallel
(?); Splash only provides a single “browser tab” to a script via its splash parameter of main function (but
you’re free to send multiple concurrent requests with Lua scripts to Splash).

There are great PhantomJS wrappers like CasperJS and NightmareJS which (among other things) bring a sync-looking
syntax to PhantomJS scripts by providing custom control flow mini-languages. However, they all have their own
gotchas and edge cases (loops? moving code to helper functions? error handling?). Splash scripts are standard Lua
code.

Note: PhantomJS itself and its wrappers are great, they deserve lots of respect; please don’t take this writeup as
an attack on them. These tools are much more mature and feature complete than Splash. Splash tries to look at the
problem from a different angle, but for each unique Splash feature there is an unique PhantomJS feature.

To read more about Splash Lua API features check Splash Lua API Overview.

1.3.4 Living Without Callbacks

Note: For the curious, Splash uses Lua coroutines under the hood.

Internally, “main” function is executed as a coroutine by Splash, and some of the splash:foo() methods use
coroutine.yield. See http://www.lua.org/pil/9.html for Lua coroutines tutorial.

In Splash scripts it is not explicit which calls are async and which calls are blocking; this is a common criticism of
coroutines/greenlets. Check this article for a good description of the problem.

However, these negatives have no real impact in Splash scripts which: are meant to be small, where shared state is
minimized, and the API is designed to execute a single command at a time, so in most cases the control flow is linear.

If you want to be safe then think of all splash methods as async; consider that after you call splash:foo()
a webpage being rendered can change. Often that’s the point of calling a method, e.g. splash:wait(time) or
splash:go(url) only make sense because webpage changes after calling them, but still - keep it in mind.

There are async methods like splash:go, splash:wait, splash:wait_for_resume, etc.; most splash methods are currently
not async, but thinking of them as of async will allow your scripts to work if we ever change that.

1.3.5 Calling Splash Methods

Unlike in many languages, methods in Lua are usually separated from an object using a colon :; to call “foo” method
of “splash” object use splash:foo() syntax. See http://www.lua.org/pil/16.html for more details.

There are two main ways to call Lua methods in Splash scripts: using positional and named arguments. To call a
method using positional arguments use parentheses splash:foo(val1, val2), to call it with named arguments
use curly braces: splash:foo{name1=val1, name2=val2}:

22 Chapter 1. Documentation

http://casperjs.org/
http://www.nightmarejs.org/
http://www.lua.org/pil/9.html
https://glyph.twistedmatrix.com/2014/02/unyielding.html
http://www.lua.org/pil/16.html

Splash Documentation, Release 3.5

-- Examples of positional arguments:
splash:go("http://example.com")
splash:wait(0.5, false)
local title = splash:evaljs("document.title")

-- The same using keyword arguments:
splash:go{url="http://example.com"}
splash:wait{time=0.5, cancel_on_redirect=false}
local title = splash:evaljs{source="document.title"}

-- Mixed arguments example:
splash:wait{0.5, cancel_on_redirect=false}

For convenience all splash methods are designed to support both styles of calling: positional and named. But since
there are no “real” named arguments in Lua most Lua functions (including the ones from the standard library) choose
to support just positional arguments.

1.3.6 Error Handling

There are two ways to report errors in Lua: raise an exception and return an error flag. See http://www.lua.org/pil/8.3.
html.

Splash uses the following convention:

1. for developer errors (e.g. incorrect function arguments) exception is raised;

2. for errors outside developer control (e.g. a non-responding remote website) status flag is returned: functions
that can fail return ok, reason pairs which developer can either handle or ignore.

If main results in an unhandled exception then Splash returns HTTP 400 response with an error message.

It is possible to raise an exception manually using Lua error function:

error("A message to be returned in a HTTP 400 response")

To handle Lua exceptions (and prevent Splash from returning HTTP 400 response) use Lua pcall; see http://www.
lua.org/pil/8.4.html.

To convert “status flag” errors to exceptions Lua assert function can be used. For example, if you expect a website
to work and don’t want to handle errors manually, then assert allows to stop processing and return HTTP 400 if the
assumption is wrong:

local ok, msg = splash:go("http://example.com")
if not ok then

-- handle error somehow, e.g.
error(msg)

end

-- a shortcut for the code above: use assert
assert(splash:go("http://example.com"))

1.3.7 Sandbox

By default Splash scripts are executed in a restricted environment: not all standard Lua modules and functions are
available, Lua require is restricted, and there are resource limits (quite loose though).

To disable the sandbox start Splash with --disable-lua-sandbox option:

1.3. Splash Scripts Tutorial 23

http://www.lua.org/pil/5.3.html
http://www.lua.org/pil/8.3.html
http://www.lua.org/pil/8.3.html
http://www.lua.org/pil/8.4.html
http://www.lua.org/pil/8.4.html

Splash Documentation, Release 3.5

$ docker run -it -p 8050:8050 scrapinghub/splash --disable-lua-sandbox

1.3.8 Timeouts

By default Splash aborts script execution after a timeout (30s by default); it is a common problem for long scripts.

For more information see I’m getting lots of 504 Timeout errors, please help! and 2. Splash Lua script does too many
things.

1.4 Splash Lua API Overview

Splash provides a lot of methods, functions and properties; all of them are documented in Splash Scripts Reference,
Available Lua Libraries, Element Object, Request Object, Response Object and Working with Binary Data. Here is a
short description of the most used ones:

1.4.1 Script as an HTTP API endpoint

Each Splash Lua script can be seen as an HTTP API endpoint, with input arguments and structured result value. For
example, you can emulate render.png endpoint using Lua script, including all its HTTP arguments.

• splash.args is the way to get data to the script;

• splash:set_result_status_code allows to change HTTP status code of the result;

• splash:set_result_content_type allows to change Content-Type returned to the client;

• splash:set_result_header allows to add custom HTTP headers to the result;

• Working with Binary Data section describes how to work with non-text data in Splash, e.g. how to return it to
the client;

• treat library allows to customize the way data is serialized to JSON when returning the result.

1.4.2 Navigation

• splash:go - load an URL to the browser;

• splash:set_content - load specified content (usually HTML) to the browser;

• splash:lock_navigation and splash:unlock_navigation - lock/unlock navigation;

• splash:on_navigation_locked allows to inspect requests discarded after navigation was locked;

• splash:set_user_agent allows to change User-Agent header used for requests;

• splash:set_custom_headers allows to set default HTTP headers Splash use.

• splash:on_request allows to filter out or replace requests to related resources; it also allows to set HTTP or
SOCKS5 proxy servers per-request;

• splash:on_response_headers allows to filter out requests based on their headers (e.g. based on Content-Type);

• splash:init_cookies, splash:add_cookie, splash:get_cookies, splash:clear_cookies and splash:delete_cookies al-
low to manage cookies.

24 Chapter 1. Documentation

Splash Documentation, Release 3.5

1.4.3 Delays

• splash:wait allows to wait for a specified amount of time;

• splash:call_later schedules a task in future;

• splash:wait_for_resume allows to wait until a certain JS event happens;

• splash:with_timeout allows to limit time spent in a code block.

1.4.4 Extracting information from a page

• splash:html returns page HTML content, after it is rendered by a browser;

• splash:url returns current URL loaded in the browser;

• splash:evaljs and splash:jsfunc allow to extract data from a page using JavaScript;

• splash:select and splash:select_all allow to run CSS selectors in a page; they return Element objects which has
many methods useful for scraping and further processing (see Element Object)

• element:text returns text content of a DOM element;

• element:bounds returns bounding box of an element;

• element:styles returns computed styles of an element;

• element:form_values return values of a <form> element;

• many methods and attributes of DOM HTMLElement are supported - see DOM Methods and DOM Attributes.

1.4.5 Screenshots

• splash:png, splash:jpeg - take PNG or JPEG screenshot;

• splash:set_viewport_full - change viewport size (call it before splash:png or splash:jpeg) to get a screenshot of
the whole page;

• splash:set_viewport_size - change size of the viewport;

• element:png and element:jpeg - take screenshots of individual DOM elements.

1.4.6 Interacting with a page

• splash:runjs, splash:evaljs and splash:jsfunc allow to run arbitrary JavaScript in page context;

• splash:autoload allows to preload JavaScript libraries or execute some JavaScript code at the beginning of each
page render;

• splash:mouse_click, splash:mouse_hover, splash:mouse_press, splash:mouse_release allow to send mouse
events to specific coordinates on a page;

• element:mouse_click and element:mouse_hover allow to send mouse events to specific DOM elements;

• splash:send_keys and splash:send_text allow to send keyboard events to a page;

• element:send_keys and element:send_text allow to send keyboard events to particular DOM elements;

• you can get initial <form> values using element:form_values, change them in Lua code, fill the form with the
updated values using element:fill and submit it using element:submit;

• splash.scroll_position allows to scroll the page;

1.4. Splash Lua API Overview 25

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement

Splash Documentation, Release 3.5

• many methods and attributes of DOM HTMLElement are supported - see DOM Methods and DOM Attributes.

1.4.7 Making HTTP requests

• splash:http_get - send an HTTP GET request and get a response without loading page to the browser;

• splash:http_post - send an HTTP POST request and get a response without loading page to the browser;

1.4.8 Inspecting network traffic

• splash:har returns all requests and responses in HAR format;

• splash:history returns information about redirects and pages loaded to the main browser window;

• splash:on_request allows to capture requests issued by a webpage and by the script;

• splash:on_response_headers allows to inspect (and maybe drop) responses once headers arrive;

• splash:on_response allows to inspect raw responses received (including content of related resources);

• splash.response_body_enabled enables full response bodies in splash:har and splash:on_response;

• see Response Object and Request Object for more information about Request and Response objects.

1.4.9 Browsing Options

• splash.js_enabled allows to turn JavaScript support OFF

• splash.private_mode_enabled allows to turn Private Mode OFF (it is required for some websites because Webkit
doesn’t have localStorage available in Private Mode);

• splash.images_enabled allows to turn OFF downloading of images;

• splash.plugins_enabled allows to enable plugins (in the default Docker image it enables Flash);

• splash.resource_timeout allows to drop slow or hanging requests to related resources after a timeout

• splash.indexeddb_enabled allows to turn IndexedDB ON

• splash.webgl_enabled allows to turn WebGL OFF

• splash.html5_media_enabled allows to turn on HTML5 media (e.g. playback of <video> tags).

• splash.media_source_enabled allows to turn off Media Source Extension API support

• splash.http2_enabled allows to turn HTTP2 support ON

1.5 Splash Scripts Reference

Note: While this reference is comprehensive, it can be hard to navigate. If you’re just starting, or don’t know what
you’re looking for exactly, check Splash Lua API Overview first.

splash object is passed to main function as a first argument; via this object a script can control the browser. Think
of it as of an API to a single browser tab.

26 Chapter 1. Documentation

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement
http://www.softwareishard.com/blog/har-12-spec/

Splash Documentation, Release 3.5

1.5.1 Attributes

splash.args

splash.args is a table with incoming parameters. It contains merged values from the orignal URL string (GET
arguments) and values sent using application/json POST request.

For example, if you passed ‘url’ argument to a script using HTTP API, then splash.args.url contains this URL.

You can also access splash.args using second, optional args argument of the main function:

function main(splash, args)
local url = args.url
-- ...

end

The example above is the same as

function main(splash)
local url = splash.args.url
-- ...

end

Using either args or splash.args is the preferred way to pass parameters to Splash scripts. An alternative way is to
use string formatting to build a script with variables embedded. There are two problems which make splash.args a
better solution:

1. data must be escaped somehow, so that it doesn’t break a Lua script;

2. embedding variables makes it impossible to use script cache efficiently (see save_args and load_args arguments
of the HTTP API).

splash.js_enabled

Enable or disable execution of JavaSript code embedded in the page.

Signature: splash.js_enabled = true/false

JavaScript execution is enabled by default.

splash.private_mode_enabled

Enable or disable browser’s private mode (incognito mode).

Signature: splash.private_mode_enabled = true/false

Private mode is enabled by default unless you pass flag --disable-private-mode at Splash startup. Note that
if you disable private mode some of the browsing data may persist between requests (it doesn’t affect cookies though).

See also: How do I disable Private mode?.

splash.resource_timeout

Set a default timeout for network requests, in seconds.

Signature: splash.resource_timeout = number

Example - abort requests to remote resources if they take more than 10 seconds:

1.5. Splash Scripts Reference 27

Splash Documentation, Release 3.5

function main(splash)
splash.resource_timeout = 10.0
assert(splash:go(splash.args.url))
return splash:png()

end

Zero or nil value means “no timeout”.

Request timeouts set in splash:on_request using request:set_timeout have a priority over
splash.resource_timeout.

splash.images_enabled

Enable/disable images.

Signature: splash.images_enabled = true/false

By default, images are enabled. Disabling of the images can save a lot of network traffic (usually around ~50%) and
make rendering faster. Note that this option can affect the JavaScript code inside page: disabling of the images may
change sizes and positions of DOM elements, and scripts may read and use them.

Splash uses in-memory cache; cached images will be displayed even when images are disabled. So if you load a page,
then disable images, then load a new page, then likely first page will display all images and second page will display
some images (the ones common with the first page). Splash cache is shared between scripts executed in the same
process, so you can see some images even if they are disabled at the beginning of the script.

Example:

function main(splash, args)
splash.images_enabled = false
assert(splash:go(splash.args.url))
return {png=splash:png()}

end

splash.plugins_enabled

Enable or disable browser plugins (e.g. Flash).

Signature: splash.plugins_enabled = true/false

Plugins are disabled by default.

splash.request_body_enabled

Enable or disable storage of request content.

Signature: splash.request_body_enabled = true/false

By default Splash doesn’t keep bodies of each request in memory. It means that request content is not avail-
able in request.info and in HAR exports. To make request content available to a Lua script set splash.
request_body_enabled = true.

Note that request body in request.info is not available in the callback splash:on_response_headers or in the request of
the response returned by splash:http_get and splash:http_post.

28 Chapter 1. Documentation

http://www.softwareishard.com/blog/har-12-spec/

Splash Documentation, Release 3.5

splash.response_body_enabled

Enable or disable response content tracking.

Signature: splash.response_body_enabled = true/false

By default Splash doesn’t keep bodies of each response in memory, for efficiency reasons. It means that in
splash:on_response callbacks response.body attribute is not available, and that response content is not available in
HAR exports. To make response content available to a Lua script set splash.response_body_enabled =
true.

Note that response.body is always available in splash:http_get and splash:http_post results, regardless of
splash.response_body_enabled option.

To enable response content tracking per-request call request:enable_response_body in a splash:on_request callback.

splash.scroll_position

Get or set current scroll position.

Signature: splash.scroll_position = {x=..., y=...}

This property allows to get and set current scroll position of the main window.

Scrolling outside window content has no effect. For example, if you set splash.scroll_position to
{x=-100, y=-100}, then splash.scroll_position will likely still be equal to the default {x=0, y=0}.

To set scroll position instead of the full form (e.g. splash.scroll_position = {x=100, y=200}) you can
also use the short form splash.scroll_position = {100, 200}. Attribute value is always a table with x
and y keys, even if you set it using the short form.

It is also possible to omit coordinates which you don’t want to change. For example, splash.scroll_position
= {y=200} sets y to 200 and keeps previous x value.

splash.indexeddb_enabled

Enable or disable IndexedDB.

Signature: splash.indexeddb_enabled = true/false

IndexedDB is disabled by default. Use splash.indexeddb_enabled = true to enable it.

Note: Currently IndexedDB is disabled by default because there are issues with Splash WebKit’s implementation.
Default value for this option may change to true in future.

splash.webgl_enabled

Enable or disable WebGL.

Signature: splash.webgl_enabled = true/false

WebGL is enabled by default. Use splash.webgl_enabled = false to disable it.

1.5. Splash Scripts Reference 29

http://www.softwareishard.com/blog/har-12-spec/
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API

Splash Documentation, Release 3.5

splash.html5_media_enabled

Enable or disable HTML5 media, including HTML5 video and audio (e.g. <video> elements playback).

Signature: splash.html5_media_enabled = true/false

HTML5 media is disabled by default. Use splash.html5_media_enabled = true to enable it.

Note: Currently HTML5 media is disabled by default, because it makes WebKit crash on some websites in some
environments. Default value for this option may change to true in future. Set it to false explicitly in a script if you
don’t want HTML5 media.

See also: html5_media HTTP API argument.

splash.media_source_enabled

Enable or disable Media Source Extensions API.

Signature: splash.media_source_enabled = true/false

Media Source is enabled by default. Use splash.media_source_enabled = false to disable it.

splash.http2_enabled

Enable or disable HTTP2.

Signature: splash.http2_enabled = true/false

HTTP2 support is disabled by default as the current implementation can cause problems (e.g. network 399 errors).
Use splash.http2_enabled = true to enable it.

1.5.2 Methods

splash:go

Go to an URL. This is similar to entering an URL in a browser address bar, pressing Enter and waiting until page
loads.

Signature: ok, reason = splash:go{url, baseurl=nil, headers=nil,
http_method="GET", body=nil, formdata=nil}

Parameters:

• url - URL to load;

• baseurl - base URL to use, optional. When baseurl argument is passed the page is still loaded from url, but
it is rendered as if it was loaded from baseurl: relative resource paths will be relative to baseurl, and the
browser will think baseurl is in address bar;

• headers - a Lua table with HTTP headers to add/replace in the initial request.

• http_method - optional, string with HTTP method to use when visiting url, defaults to GET, Splash also supports
POST.

• body - optional, string with body for POST request

30 Chapter 1. Documentation

https://developer.mozilla.org/en-US/docs/Web/API/Media_Source_Extensions_API

Splash Documentation, Release 3.5

• formdata - Lua table that will be converted to urlencoded POST body and sent with header content-type:
application/x-www-form-urlencoded

Returns: ok, reason pair. If ok is nil then error happened during page load; reason provides an information
about error type.

Async: yes, unless the navigation is locked.

Five types of errors are reported (ok can be nil in 5 cases):

1. There is a network error: a host doesn’t exist, server dropped connection, etc. In this case reason is
"network<code>". A list of possible error codes can be found in Qt docs. For example, "network3"
means a DNS error (invalid hostname).

2. Server returned a response with 4xx or 5xx HTTP status code. reason is "http<code>" in this case, i.e.
for HTTP 404 Not Found reason is "http404".

3. Navigation is locked (see splash:lock_navigation); reason is "navigation_locked".

4. Splash can’t render the main page (e.g. because the first request was aborted) - reason is render_error.

5. If Splash can’t decide what caused the error, just "error" is returned.

Error handling example:

local ok, reason = splash:go("http://example.com")
if not ok then

if reason:sub(0,4) == 'http' then
-- handle HTTP errors

else
-- handle other errors

end
end
-- process the page

-- assert can be used as a shortcut for error handling
assert(splash:go("http://example.com"))

Errors (ok==nil) are only reported when “main” webpage request failed. If a request to a related resource failed then
no error is reported by splash:go. To detect and handle such errors (e.g. broken image/js/css links, ajax requests
failed to load) use splash:har or splash:on_response.

splash:go follows all HTTP redirects before returning the result, but it doesn’t follow HTML <meta
http-equiv="refresh" ...> redirects or redirects initiated by JavaScript code. To give the webpage time
to follow those redirects use splash:wait.

headers argument allows to add or replace default HTTP headers for the initial request. To set custom headers for
all further requests (including requests to related resources) use splash:set_custom_headers or splash:on_request.

Custom headers example:

local ok, reason = splash:go{"http://example.com", headers={
["Custom-Header"] = "Header Value",

}})

User-Agent header is special: once used, it is kept for further requests. This is an implementation detail and it could
change in future releases; to set User-Agent header it is recommended to use splash:set_user_agent method.

splash:wait

Wait for time seconds. When script is waiting browser continues processing the webpage.

1.5. Splash Scripts Reference 31

http://doc.qt.io/qt-5/qnetworkreply.html#NetworkError-enum

Splash Documentation, Release 3.5

Signature: ok, reason = splash:wait{time, cancel_on_redirect=false,
cancel_on_error=true}

Parameters:

• time - time to wait, in seconds;

• cancel_on_redirect - if true (not a default) and a redirect happened while waiting, then splash:wait stops
earlier and returns nil, "redirect". Redirect could be initiated by <meta http-equiv="refresh"
...> HTML tags or by JavaScript code.

• cancel_on_error - if true (default) and an error which prevents page from being rendered happened while waiting
(e.g. an internal WebKit error or a network error like a redirect to a non-resolvable host) then splash:wait
stops earlier and returns nil, "<error string>".

Returns: ok, reason pair. If ok is nil then the timer was stopped prematurely, and reason contains a string
with a reason.

Async: yes.

Usage example:

-- go to example.com, wait 0.5s, return rendered html, ignore all errors.
function main(splash)

splash:go("http://example.com")
splash:wait(0.5)
return {html=splash:html()}

end

By default wait timer continues to tick when redirect happens. cancel_on_redirect option can be used to restart
the timer after each redirect. For example, here is a function that waits for a given time after each page load in case of
redirects:

function wait_restarting_on_redirects(splash, time, max_redirects)
local redirects_remaining = max_redirects
while redirects_remaining > 0 do

local ok, reason = self:wait{time=time, cancel_on_redirect=true}
if reason ~= 'redirect' then

return ok, reason
end
redirects_remaining = redirects_remaining - 1

end
return nil, "too_many_redirects"

end

splash:jsfunc

Convert JavaScript function to a Lua callable.

Signature: lua_func = splash:jsfunc(func)

Parameters:

• func - a string which defines a JavaScript function.

Returns: a function that can be called from Lua to execute JavaScript code in page context.

Async: no.

Example:

32 Chapter 1. Documentation

Splash Documentation, Release 3.5

function main(splash, args)
local get_div_count = splash:jsfunc([[
function () {
var body = document.body;
var divs = body.getElementsByTagName('div');
return divs.length;

}
]])
splash:go(args.url)

return ("There are %s DIVs in %s"):format(
get_div_count(), args.url)

end

Note how Lua [[]] string syntax is helpful here.

JavaScript functions may accept arguments:

local vec_len = splash:jsfunc([[
function(x, y) {

return Math.sqrt(x*x + y*y)
}

]])
return {res=vec_len(5, 4)}

Global JavaScript functions can be wrapped directly:

local pow = splash:jsfunc("Math.pow")
local twenty_five = pow(5, 2) -- 5^2 is 25
local thousand = pow(10, 3) -- 10^3 is 1000

Lua → JavaScript conversion rules:

Lua JavaScript
string string
number number
boolean boolean
table Object or Array, see below
nil undefined
Element DOM node

Lua strings, numbers, booleans and tables can be passed as arguments; they are converted to JS
strings/numbers/booleans/objects. Element instances are supported, but they can’t be inside a Lua table.

Currently it is not possible to pass other Lua objects. For example, it is not possible to pass a wrapped JavaScript
function or a regular Lua function as an argument to another wrapped JavaScript function.

By default Lua tables are converted to JavaScript Objects. To convert a table to an Array use treat.as_array.

JavaScript → Lua conversion rules:

1.5. Splash Scripts Reference 33

Splash Documentation, Release 3.5

JavaScript Lua
string string
number number
boolean boolean
Object table
Array table, marked as array (see treat.as_array)
undefined nil
null "" (an empty string)
Date string: date’s ISO8601 representation, e.g. 1958-05-21T10:12:00.000Z
Node Element instance
NodeList a tabl with Element instances
function nil
circular object nil
host object nil

Function result is converted from JavaScript to Lua data type. Only simple JS objects are supported. For example,
returning a function or a JQuery selector from a wrapped function won’t work.

Returning a Node (a reference to a DOM element) or NodeList instance (result of document.querySelectorAll) works
though, but only if Node or NodeList is the only result - Nodes and NodeLists can’t be inside other objects or arrays.

Note: The rule of thumb: if an argument or a return value can be serialized via JSON, then it is fine. You can also
return DOM Element or a NodeList, but they can’t be inside other data structures.

Note that currently you can’t return JQuery $ results and similar structures from JavaScript to Lua; to pass data you
have to extract their attributes of interest as plain strings/numbers/objects/arrays:

-- this function assumes jQuery is loaded in page
local get_hrefs = splash:jsfunc([[

function(sel){
return $(sel).map(function(){return this.href}).get();

}
]])
local hrefs = get_hrefs("a.story-title")

However, you can also write the code above using Element objects and splash:select_all:

local elems = splash:select_all("a.story-title")
local hrefs = {}
for i, elem in ipairs(elems) do

hrefs[i] = elem.node:getAttribute("href")
end

Function arguments and return values are passed by value. For example, if you modify an argument from inside a
JavaScript function then the caller Lua code won’t see the changes, and if you return a global JS object and modify it
in Lua then object won’t be changed in webpage context. The exception is Element which has some mutable fields.

If a JavaScript function throws an error, it is re-throwed as a Lua error. To handle errors it is better to use JavaScript
try/catch because some of the information about the error can be lost in JavaScript → Lua conversion.

See also: splash:runjs, splash:evaljs, splash:wait_for_resume, splash:autoload, treat.as_array, Element Object,
splash:select, splash:select_all.

34 Chapter 1. Documentation

Splash Documentation, Release 3.5

splash:evaljs

Execute a JavaScript snippet in page context and return the result of the last statement.

Signature: result = splash:evaljs(snippet)

Parameters:

• snippet - a string with JavaScript source code to execute.

Returns: the result of the last statement in snippet, converted from JavaScript to Lua data types. In case of syntax
errors or JavaScript exceptions an error is raised.

Async: no.

JavaScript → Lua conversion rules are the same as for splash:jsfunc.

splash:evaljs is useful for evaluation of short JavaScript snippets without defining a wrapper function. Example:

local title = splash:evaljs("document.title")

Don’t use splash:evaljs when the result is not needed - it is inefficient and could lead to problems; use splash:runjs
instead. For example, the following innocent-looking code (using jQuery) will do unnecessary work:

splash:evaljs("$(console.log('foo'));")

A gotcha is that to allow chaining jQuery $ function returns a huge object, splash:evaljs tries to serialize it and convert
to Lua, which is a waste of resources. splash:runjs doesn’t have this problem.

If the code you’re evaluating needs arguments it is better to use splash:jsfunc instead of splash:evaljs and string
formatting. Compare:

function main(splash)

local font_size = splash:jsfunc([[
function(sel) {

var el = document.querySelector(sel);
return getComputedStyle(el)["font-size"];

}
]])

local font_size2 = function(sel)
-- FIXME: escaping of `sel` parameter!
local js = string.format([[

var el = document.querySelector("%s");
getComputedStyle(el)["font-size"]

]], sel)
return splash:evaljs(js)

end

-- ...
end

See also: splash:runjs, splash:jsfunc, splash:wait_for_resume, splash:autoload, Element Object, splash:select,
splash:select_all.

splash:runjs

Run JavaScript code in page context.

1.5. Splash Scripts Reference 35

Splash Documentation, Release 3.5

Signature: ok, error = splash:runjs(snippet)

Parameters:

• snippet - a string with JavaScript source code to execute.

Returns: ok, error pair. When the execution is successful ok is True. In case of JavaScript errors ok is nil, and
error contains the error string.

Async: no.

Example:

assert(splash:runjs("document.title = 'hello';"))

Note that JavaScript functions defined using function foo(){} syntax won’t be added to the global scope:

assert(splash:runjs("function foo(){return 'bar'}"))
local res = splash:evaljs("foo()") -- this raises an error

It is an implementation detail: the code passed to splash:runjs is executed in a closure. To define functions use global
variables, e.g.:

assert(splash:runjs("foo = function (){return 'bar'}"))
local res = splash:evaljs("foo()") -- this returns 'bar'

If the code needs arguments it is better to use splash:jsfunc. Compare:

function main(splash)

-- Lua function to scroll window to (x, y) position.
function scroll_to(x, y)

local js = string.format(
"window.scrollTo(%s, %s);",
tonumber(x),
tonumber(y)

)
assert(splash:runjs(js))

end

-- a simpler version using splash:jsfunc
local scroll_to2 = splash:jsfunc("window.scrollTo")

-- ...
end

See also: splash:runjs, splash:jsfunc, splash:autoload, splash:wait_for_resume.

splash:wait_for_resume

Run asynchronous JavaScript code in page context. The Lua script will yield until the JavaScript code tells it to
resume.

Signature: result, error = splash:wait_for_resume(snippet, timeout)

Parameters:

• snippet - a string with a JavaScript source code to execute. This code must include a function called main.
The first argument to main is an object that has the properties resume and error. resume is a function
which can be used to resume Lua execution. It takes an optional argument which will be returned to Lua in the

36 Chapter 1. Documentation

Splash Documentation, Release 3.5

result.value return value. error is a function which can be called with a required string value that is
returned in the error return value.

• timeout - a number which determines (in seconds) how long to allow JavaScript to execute before forceably
returning control to Lua. Defaults to zero, which disables the timeout.

Returns: result, error pair. When the execution is successful result is a table. If the value returned
by JavaScript is not undefined, then the result table will contain a key value that has the value passed
to splash.resume(...). The result table also contains any additional key/value pairs set by splash.
set(...). In case of timeout or JavaScript errors result is nil and error contains an error message string.

Async: yes.

Examples:

The first, trivial example shows how to transfer control of execution from Lua to JavaScript and then back to Lua. This
command will tell JavaScript to sleep for 3 seconds and then return to Lua. Note that this is an async operation: the
Lua event loop and the JavaScript event loop continue to run during this 3 second pause, but Lua will not continue
executing the current function until JavaScript calls splash.resume().

function main(splash)

local result, error = splash:wait_for_resume([[
function main(splash) {

setTimeout(function () {
splash.resume();

}, 3000);
}

]])

-- result is {}
-- error is nil

end

result is set to an empty table to indicate that nothing was returned from splash.resume. You can use
assert(splash:wait_for_resume(...)) even when JavaScript does not return a value because the empty
table signifies success to assert().

Note: Your JavaScript code must contain a main() function. You will get an error if you do not include it. The first
argument to this function can have any name you choose, of course. We will call it splash by convention in this
documentation.

The next example shows how to return a value from JavaScript to Lua. You can return booleans, numbers, strings,
arrays, or objects.

function main(splash)

local result, error = splash:wait_for_resume([[
function main(splash) {

setTimeout(function () {
splash.resume([1, 2, 'red', 'blue']);

}, 3000);
}

]])

-- result is {value={1, 2, 'red', 'blue'}}

(continues on next page)

1.5. Splash Scripts Reference 37

Splash Documentation, Release 3.5

(continued from previous page)

-- error is nil

end

Note: As with splash:evaljs, be wary of returning objects that are too large, such as the $ object in jQuery, which
will consume a lot of time and memory to convert to a Lua result.

You can also set additional key/value pairs in JavaScript with the splash.set(key, value) function. Key/value
pairs will be included in the result table returned to Lua. The following example demonstrates this.

function main(splash)

local result, error = splash:wait_for_resume([[
function main(splash) {

setTimeout(function () {
splash.set("foo", "bar");
splash.resume("ok");

}, 3000);
}

]])

-- result is {foo="bar", value="ok"}
-- error is nil

end

The next example shows an incorrect usage of splash:wait_for_resume(): the JavaScript code does not
contain a main() function. result is nil because splash.resume() is never called, and error contains an
error message explaining the mistake.

function main(splash)

local result, error = splash:wait_for_resume([[
console.log('hello!');

]])

-- result is nil
-- error is "error: wait_for_resume(): no main() function defined"

end

The next example shows error handling. If splash.error(...) is called instead of splash.resume(), then
result will be nil and error will contain the string passed to splash.error(...).

function main(splash)

local result, error = splash:wait_for_resume([[
function main(splash) {

setTimeout(function () {
splash.error("Goodbye, cruel world!");

}, 3000);
}

]])

(continues on next page)

38 Chapter 1. Documentation

Splash Documentation, Release 3.5

(continued from previous page)

-- result is nil
-- error is "error: Goodbye, cruel world!"

end

Your JavaScript code must either call splash.resume() or splash.error() exactly one time. Subsequent
calls to either function have no effect, as shown in the next example.

function main(splash)

local result, error = splash:wait_for_resume([[
function main(splash) {

setTimeout(function () {
splash.resume("ok");
splash.resume("still ok");
splash.error("not ok");

}, 3000);
}

]])

-- result is {value="ok"}
-- error is nil

end

The next example shows the effect of the timeout argument. We have set the timeout argument to
1 second, but our JavaScript code will not call splash.resume() for 3 seconds, which guarantees that
splash:wait_for_resume() will time out.

When it times out, result will be nil, error will contain a string explaining the timeout, and Lua will continue
executing. Calling splash.resume() or splash.error() after a timeout has no effect.

function main(splash)

local result, error = splash:wait_for_resume([[
function main(splash) {

setTimeout(function () {
splash.resume("Hello, world!");

}, 3000);
}

]], 1)

-- result is nil
-- error is "error: One shot callback timed out while waiting for resume() or

→˓error()."

end

Note: The timeout must be >= 0. If the timeout is 0, then splash:wait_for_resume() will never timeout
(although Splash’s HTTP timeout still applies).

Note that your JavaScript code is not forceably canceled by a timeout: it may continue to run until Splash shuts down
the entire browser context.

See also: splash:runjs, splash:jsfunc, splash:evaljs.

1.5. Splash Scripts Reference 39

Splash Documentation, Release 3.5

splash:autoload

Set JavaScript to load automatically on each page load.

Signature: ok, reason = splash:autoload{source_or_url, source=nil, url=nil}

Parameters:

• source_or_url - either a string with JavaScript source code or an URL to load the JavaScript code from;

• source - a string with JavaScript source code;

• url - an URL to load JavaScript source code from.

Returns: ok, reason pair. If ok is nil, error happened and reason contains an error description.

Async: yes, but only when an URL of a remote resource is passed.

splash:autoload allows to execute JavaScript code at each page load. splash:autoload doesn’t execute the passed
JavaScript code itself. To execute some code once, after page is loaded use splash:runjs or splash:jsfunc.

splash:autoload can be used to preload utility JavaScript libraries or replace JavaScript objects before a webpage has
a chance to do it.

Example:

function main(splash, args)
splash:autoload([[
function get_document_title(){

return document.title;
}

]])
assert(splash:go(args.url))

return splash:evaljs("get_document_title()")
end

For the convenience, when a first splash:autoload argument starts with “http://” or “https://” a script from the passed
URL is loaded. Example 2 - make sure a remote library is available:

function main(splash, args)
assert(splash:autoload("https://code.jquery.com/jquery-2.1.3.min.js"))
assert(splash:go(splash.args.url))
local version = splash:evaljs("$.fn.jquery")

return 'JQuery version: ' .. version
end

To disable URL auto-detection use ‘source’ and ‘url’ arguments:

splash:autoload{url="https://code.jquery.com/jquery-2.1.3.min.js"}
splash:autoload{source="window.foo = 'bar';"}

It is a good practice not to rely on auto-detection when the argument is not a constant.

If splash:autoload is called multiple times then all its scripts are executed on page load, in order they were added.

To revert Splash not to execute anything on page load use splash:autoload_reset.

See also: splash:evaljs, splash:runjs, splash:jsfunc, splash:wait_for_resume, splash:autoload_reset.

40 Chapter 1. Documentation

http://
https://

Splash Documentation, Release 3.5

splash:autoload_reset

Unregister all scripts previously set by splash:autoload.

Signature: splash:autoload_reset()

Returns: nil

Async: no

After splash:autoload_reset call scripts set by splash:autoload won’t be loaded in future requests; one can use
splash:autoload again to setup a different set of scripts.

Already loaded scripts are not removed from the current page context.

See also: splash:autoload.

splash:call_later

Arrange for the callback to be called after the given delay seconds.

Signature: timer = splash:call_later(callback, delay)

Parameters:

• callback - function to run;

• delay - delay, in seconds;

Returns: a handle which allows to cancel pending timer or reraise exceptions happened in a callback.

Async: no.

Example 1 - take two HTML snapshots, at 1.5s and 2.5s after page loading starts:

function main(splash, args)
local snapshots = {}
local timer = splash:call_later(function()
snapshots["a"] = splash:html()
splash:wait(1.0)
snapshots["b"] = splash:html()

end, 1.5)
assert(splash:go(args.url))
splash:wait(3.0)
timer:reraise()

return snapshots
end

splash:call_later returns a handle (a timer). To cancel pending task use its timer:cancel() method. If a
callback is already started timer:cancel() has no effect.

By default, exceptions raised in splash:call_later callback stop the callback, but don’t stop the main script. To reraise
these errors use timer:reraise().

splash:call_later arranges callback to be executed in future; it never runs it immediately, even if delay is 0. When
delay is 0 callback is executed no earlier than current function yields to event loop, i.e. no earlier than some of the
async functions is called.

1.5. Splash Scripts Reference 41

Splash Documentation, Release 3.5

splash:http_get

Send an HTTP GET request and return a response without loading the result to the browser window.

Signature: response = splash:http_get{url, headers=nil, follow_redirects=true}

Parameters:

• url - URL to load;

• headers - a Lua table with HTTP headers to add/replace in the initial request;

• follow_redirects - whether to follow HTTP redirects.

Returns: a Response Object.

Async: yes.

Example:

local reply = splash:http_get("http://example.com")

This method doesn’t change the current page contents and URL. To load a webpage to the browser use splash:go.

See also: splash:http_post, Response Object.

splash:http_post

Send an HTTP POST request and return a response without loading the result to the browser window.

Signature: response = splash:http_post{url, headers=nil, follow_redirects=true,
body=nil}

Parameters:

• url - URL to load;

• headers - a Lua table with HTTP headers to add/replace in the initial request;

• follow_redirects - whether to follow HTTP redirects.

• body - string with body of request, if you intend to send form submission, body should be urlencoded.

Returns: a Response Object.

Async: yes.

Example of form submission:

local reply = splash:http_post{url="http://example.com", body="user=Frank&
→˓password=hunter2"}
-- reply.body contains raw HTML data (as a binary object)
-- reply.status contains HTTP status code, as a number
-- see Response docs for more info

Example of JSON POST request:

json = require("json")

local reply = splash:http_post{
url="http://example.com/post",
body=json.encode({alpha="beta"}),
headers={["content-type"]="application/json"}

}

42 Chapter 1. Documentation

Splash Documentation, Release 3.5

This method doesn’t change the current page contents and URL. To load a webpage to the browser use splash:go.

See also: splash:http_get, json, Response Object.

splash:set_content

Set the content of the current page and wait until the page loads.

Signature: ok, reason = splash:set_content{data, mime_type="text/html;
charset=utf-8", baseurl=""}

Parameters:

• data - new page content;

• mime_type - MIME type of the content;

• baseurl - external objects referenced in the content are located relative to baseurl.

Returns: ok, reason pair. If ok is nil then error happened during page load; reason provides an information
about error type.

Async: yes.

Example:

function main(splash)
assert(splash:set_content("<html><body><h1>hello</h1></body></html>"))
return splash:png()

end

splash:html

Return a HTML snapshot of a current page (as a string).

Signature: html = splash:html()

Returns: contents of a current page (as a string).

Async: no.

Example:

-- A simplistic implementation of render.html endpoint
function main(splash)

splash:set_result_content_type("text/html; charset=utf-8")
assert(splash:go(splash.args.url))
return splash:html()

end

Nothing prevents us from taking multiple HTML snapshots. For example, let’s visit first 3 pages on a website, and for
each page store initial HTML snapshot and an HTML snapshot after waiting 0.5s:

treat = require("treat")

-- Given an url, this function returns a table
-- with the page screenshoot, it's HTML contents
-- and it's title.
function page_info(splash, url)
local ok, msg = splash:go(url)

(continues on next page)

1.5. Splash Scripts Reference 43

Splash Documentation, Release 3.5

(continued from previous page)

if not ok then
return {ok=false, reason=msg}

end
local res = {
html=splash:html(),
title=splash:evaljs('document.title'),
image=splash:png(),
ok=true,

}
return res

end

function main(splash, args)
-- visit first 3 pages of hacker news
local base = "https://news.ycombinator.com/news?p="
local result = treat.as_array({})
for i=1,3 do
local url = base .. i
result[i] = page_info(splash, url)

end
return result

end

splash:png

Return a width x height screenshot of a current page in PNG format.

Signature: png = splash:png{width=nil, height=nil, render_all=false,
scale_method='raster', region=nil}

Parameters:

• width - optional, width of a screenshot in pixels;

• height - optional, height of a screenshot in pixels;

• render_all - optional, if true render the whole webpage;

• scale_method - optional, method to use when resizing the image, 'raster' or 'vector';

• region - optional, {left, top, right, bottom} coordinates of a cropping rectangle.

Returns: PNG screenshot data, as a binary object. When the result is empty nil is returned.

Async: no.

Without arguments splash:png() will take a snapshot of the current viewport.

width parameter sets the width of the resulting image. If the viewport has a different width, the image is scaled up or
down to match the specified one. For example, if the viewport is 1024px wide then splash:png{width=100}
will return a screenshot of the whole viewport, but the image will be downscaled to 100px width.

height parameter sets the height of the resulting image. If the viewport has a different height, the image is trimmed or
extended vertically to match the specified one without resizing the content. The region created by such extension is
transparent.

To set the viewport size use splash:set_viewport_size, splash:set_viewport_full or render_all argument.
render_all=true is equivalent to running splash:set_viewport_full() just before the rendering and
restoring the viewport size afterwards.

44 Chapter 1. Documentation

Splash Documentation, Release 3.5

To render an arbitrary part of a page use region parameter. It should be a table with {left, top, right,
bottom} coordinates. Coordinates are relative to current scroll position. Currently you can’t take anything which is
not in a viewport; to make sure part of a page can be rendered call splash:set_viewport_full before using splash:png
with region. This may be fixed in future Splash versions.

With region and a bit of JavaScript it is possible to render only a single HTML element. Example:

-- This in an example of how to use lower-level
-- Splash functions to get element screenshot.
--
-- In practice use splash:select("a"):png{pad=32}.

-- this function adds padding around region
function pad(r, pad)
return {r[1]-pad, r[2]-pad, r[3]+pad, r[4]+pad}

end

function main(splash, args)
-- this function returns element bounding box
local get_bbox = splash:jsfunc([[
function(css) {

var el = document.querySelector(css);
var r = el.getBoundingClientRect();
return [r.left, r.top, r.right, r.bottom];

}
]])

-- main script
assert(splash:go(splash.args.url))
assert(splash:wait(0.5))

-- don't crop image by a viewport
splash:set_viewport_full()

-- let's get a screenshot of a first <a>
-- element on a page, with extra 32px around it
local region = pad(get_bbox("a"), 32)
return splash:png{region=region}

end

An easier way is to use element:png instead:

splash:select('#my-element'):png()

scale_method parameter must be either 'raster' or 'vector'. When scale_method='raster', the image
is resized per-pixel. When scale_method='vector', the image is resized per-element during rendering. Vector
scaling is more performant and produces sharper images, however it may cause rendering artifacts, so use it with
caution.

The result of splash:png is a binary object, so you can return it directly from “main” function and it will be sent
as a binary image data with a proper Content-Type header:

-- A simplistic implementation of render.png
-- endpoint.
function main(splash, args)
assert(splash:go(args.url))

(continues on next page)

1.5. Splash Scripts Reference 45

Splash Documentation, Release 3.5

(continued from previous page)

return splash:png{
width=args.width,
height=args.height

}
end

If the result of splash:png() is returned as a table value, it is encoded to base64 to make it possible to embed in
JSON and build a data:uri on a client (magic!):

function main(splash)
assert(splash:go(splash.args.url))
return {png=splash:png()}

end

When an image is empty splash:png returns nil. If you want Splash to raise an error in these cases use assert:

function main(splash)
assert(splash:go(splash.args.url))
local png = assert(splash:png())
return {png=png}

end

See also: splash:jpeg, Binary Objects, splash:set_viewport_size, splash:set_viewport_full, element:jpeg, element:png.

splash:jpeg

Return a width x height screenshot of a current page in JPEG format.

Signature: jpeg = splash:jpeg{width=nil, height=nil, render_all=false,
scale_method='raster', quality=75, region=nil}

Parameters:

• width - optional, width of a screenshot in pixels;

• height - optional, height of a screenshot in pixels;

• render_all - optional, if true render the whole webpage;

• scale_method - optional, method to use when resizing the image, 'raster' or 'vector';

• quality - optional, quality of JPEG image, integer in range from 0 to 100;

• region - optional, {left, top, right, bottom} coordinates of a cropping rectangle.

Returns: JPEG screenshot data, as a binary object. When the image is empty nil is returned.

Async: no.

Without arguments splash:jpeg() will take a snapshot of the current viewport.

width parameter sets the width of the resulting image. If the viewport has a different width, the image is scaled up or
down to match the specified one. For example, if the viewport is 1024px wide then splash:jpeg{width=100}
will return a screenshot of the whole viewport, but the image will be downscaled to 100px width.

height parameter sets the height of the resulting image. If the viewport has a different height, the image is trimmed or
extended vertically to match the specified one without resizing the content. The region created by such extension is
white.

46 Chapter 1. Documentation

data:uri

Splash Documentation, Release 3.5

To set the viewport size use splash:set_viewport_size, splash:set_viewport_full or render_all argument.
render_all=true is equivalent to running splash:set_viewport_full() just before the rendering and
restoring the viewport size afterwards.

To render an arbitrary part of a page use region parameter. It should be a table with {left, top, right,
bottom} coordinates. Coordinates are relative to current scroll position. Currently you can’t take anything which is
not in a viewport; to make sure part of a page can be rendered call splash:set_viewport_full before using splash:jpeg
with region. This may be fixed in future Splash versions.

With some JavaScript it is possible to render only a single HTML element using region parameter. See an example
in splash:png docs. An alternative is to use element:jpeg.

scale_method parameter must be either 'raster' or 'vector'. When scale_method='raster', the image
is resized per-pixel. When scale_method='vector', the image is resized per-element during rendering. Vector
scaling is more performant and produces sharper images, however it may cause rendering artifacts, so use it with
caution.

quality parameter must be an integer in range from 0 to 100. Values above 95 should be avoided; quality=100
disables portions of the JPEG compression algorithm, and results in large files with hardly any gain in image quality.

The result of splash:jpeg is a binary object, so you can return it directly from “main” function and it will be sent
as a binary image data with a proper Content-Type header:

-- A simplistic implementation of render.jpeg endpoint
function main(splash, args)

assert(splash:go(args.url))
return splash:jpeg{

width=args.width,
height=args.height

}
end

If the result of splash:jpeg() is returned as a table value, it is encoded to base64 to make it possible to embed in
JSON and build a data:uri on a client:

function main(splash)
assert(splash:go(splash.args.url))
return {jpeg=splash:jpeg()}

end

When an image is empty splash:jpeg returns nil. If you want Splash to raise an error in these cases use assert:

function main(splash)
assert(splash:go(splash.args.url))
local jpeg = assert(splash:jpeg())
return {jpeg=jpeg}

end

See also: splash:png, Binary Objects, splash:set_viewport_size, splash:set_viewport_full, element:jpeg, element:png.

Note that splash:jpeg() is often 1.5..2x faster than splash:png().

splash:har

Signature: har = splash:har{reset=false}

Parameters:

• reset - optional; when true, reset HAR records after taking a snapshot.

1.5. Splash Scripts Reference 47

data:uri

Splash Documentation, Release 3.5

Returns: information about pages loaded, events happened, network requests sent and responses received in HAR
format.

Async: no.

Use splash:har to get information about network requests and other Splash activity.

If your script returns the result of splash:har() in a top-level "har" key then Splash UI will give you a nice
diagram with network information (similar to “Network” tabs in Firefox or Chrome developer tools):

function main(splash)
assert(splash:go(splash.args.url))
return {har=splash:har()}

end

By default, when several requests are made (e.g. splash:go is called multiple times), HAR data is accumulated and
combined into a single object (logs are still grouped by page).

If you want only updated information use reset parameter: it drops all existing logs and start recording from scratch:

function main(splash, args)
assert(splash:go(args.url1))
local har1 = splash:har{reset=true}
assert(splash:go(args.url2))
local har2 = splash:har()
return {har1=har1, har2=har2}

end

By default, request and response contents are not included in HAR data. To enable request contents, use
splash.request_body_enabled option. To enable response contents, use splash.response_body_enabled option or re-
quest:enable_response_body method.

See also: splash:har_reset, splash:on_response, splash.request_body_enabled, splash.response_body_enabled, re-
quest:enable_response_body.

splash:har_reset

Signature: splash:har_reset()

Returns: nil.

Async: no.

Drops all internally stored HAR records. It is similar to splash:har{reset=true}, but doesn’t return anything.

See also: splash:har.

splash:history

Signature: entries = splash:history()

Returns: information about requests/responses for the pages loaded, in HAR entries format.

Async: no.

splash:history doesn’t return information about related resources like images, scripts, stylesheets or AJAX
requests. If you need this information use splash:har or splash:on_response.

Let’s get a JSON array with HTTP headers of the response we’re displaying:

48 Chapter 1. Documentation

http://www.softwareishard.com/blog/har-12-spec/
http://www.softwareishard.com/blog/har-12-spec/
http://www.softwareishard.com/blog/har-12-spec/#entries

Splash Documentation, Release 3.5

function main(splash)
assert(splash:go(splash.args.url))
local entries = splash:history()
-- #entries means "entries length"; arrays in Lua start from 1
local last_entry = entries[#entries]
return {

headers = last_entry.response.headers
}

end

See also: splash:har, splash:on_response.

splash:url

Signature: url = splash:url()

Returns: the current URL.

Async: no.

splash:get_cookies

Signature: cookies = splash:get_cookies()

Returns: CookieJar contents - an array with all cookies available for the script. The result is returned in HAR cookies
format.

Async: no.

Example result:

[
{

"name": "TestCookie",
"value": "Cookie Value",
"path": "/",
"domain": "www.example.com",
"expires": "2016-07-24T19:20:30+02:00",
"httpOnly": false,
"secure": false,

}
]

splash:add_cookie

Add a cookie.

Signature: cookies = splash:add_cookie{name, value, path=nil, domain=nil,
expires=nil, httpOnly=nil, secure=nil}

Async: no.

Example:

1.5. Splash Scripts Reference 49

http://www.softwareishard.com/blog/har-12-spec/#cookies

Splash Documentation, Release 3.5

function main(splash)
splash:add_cookie{"sessionid", "237465ghgfsd", "/", domain="http://example.com"}
splash:go("http://example.com/")
return splash:html()

end

splash:init_cookies

Replace all current cookies with the passed cookies.

Signature: splash:init_cookies(cookies)

Parameters:

• cookies - a Lua table with all cookies to set, in the same format as splash:get_cookies returns.

Returns: nil.

Async: no.

Example 1 - save and restore cookies:

local cookies = splash:get_cookies()
-- ... do something ...
splash:init_cookies(cookies) -- restore cookies

Example 2 - initialize cookies manually:

splash:init_cookies({
{name="baz", value="egg"},
{name="spam", value="egg", domain="example.com"},
{

name="foo",
value="bar",
path="/",
domain="localhost",
expires="2016-07-24T19:20:30+02:00",
secure=true,
httpOnly=true,

}
})

-- do something
assert(splash:go("http://example.com"))

splash:clear_cookies

Clear all cookies.

Signature: n_removed = splash:clear_cookies()

Returns: a number of cookies deleted.

Async: no.

To delete only specific cookies use splash:delete_cookies.

50 Chapter 1. Documentation

Splash Documentation, Release 3.5

splash:delete_cookies

Delete matching cookies.

Signature: n_removed = splash:delete_cookies{name=nil, url=nil}

Parameters:

• name - a string, optional. All cookies with this name will be deleted.

• url - a string, optional. Only cookies that should be sent to this url will be deleted.

Returns: a number of cookies deleted.

Async: no.

This function does nothing when both name and url are nil. To remove all cookies use splash:clear_cookies method.

splash:lock_navigation

Lock navigation.

Signature: splash:lock_navigation()

Async: no.

After calling this method the navigation away from the current page is no longer permitted - the page is locked to the
current URL.

splash:unlock_navigation

Unlock navigation.

Signature: splash:unlock_navigation()

Async: no.

After calling this method the navigation away from the page becomes permitted. Note that the pending navigation
requests suppressed by splash:lock_navigation won’t be reissued.

splash:set_result_status_code

Set HTTP status code of a result returned to a client.

Signature: splash:set_result_status_code(code)

Parameters:

• code - HTTP status code (a number 200 <= code <= 999).

Returns: nil.

Async: no.

Use this function to signal errors or other conditions to splash client using HTTP status codes.

Example:

1.5. Splash Scripts Reference 51

Splash Documentation, Release 3.5

function main(splash)
local ok, reason = splash:go("http://www.example.com")
if reason == "http500" then

splash:set_result_status_code(503)
splash:set_result_header("Retry-After", 10)
return ''

end
return splash:png()

end

Be careful with this function: some proxies can be configured to process responses differently based on their status
codes. See e.g. nginx proxy_next_upstream option.

In case of unhandled Lua errors HTTP status code is set to 400 regardless of the value set with
splash:set_result_status_code.

See also: splash:set_result_content_type, splash:set_result_header.

splash:set_result_content_type

Set Content-Type of a result returned to a client.

Signature: splash:set_result_content_type(content_type)

Parameters:

• content_type - a string with Content-Type header value.

Returns: nil.

Async: no.

If a table is returned by “main” function then splash:set_result_content_type has no effect: Content-Type
of the result is set to application/json.

This function does not set Content-Type header for requests initiated by splash:go; this function is for setting Content-
Type header of a result.

Example:

function main(splash)
splash:set_result_content_type("text/xml")
return [[

<?xml version="1.0" encoding="UTF-8"?>
<note>

<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>

</note>
]]

end

See also:

• splash:set_result_header which allows to set any custom response header, not only Content-Type.

• Binary Objects which have their own method for setting result Content-Type.

52 Chapter 1. Documentation

http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_next_upstream

Splash Documentation, Release 3.5

splash:set_result_header

Set header of result response returned to splash client.

Signature: splash:set_result_header(name, value)

Parameters:

• name of response header

• value of response header

Returns: nil.

Async: no.

This function does not set HTTP headers for responses returned by splash:go or requests initiated by splash:go; this
function is for setting headers of splash response sent to client.

Example 1, set ‘foo=bar’ header:

function main(splash)
splash:set_result_header("foo", "bar")
return "hello"

end

Example 2, measure the time needed to build PNG screenshot and return it result in an HTTP header:

function main(splash)

-- this function measures the time code takes to execute and returns
-- it in an HTTP header
function timeit(header_name, func)

local start_time = splash:get_perf_stats().walltime
local result = func() -- it won't work for multiple returned values!
local end_time = splash:get_perf_stats().walltime
splash:set_result_header(header_name, tostring(end_time - start_time))
return result

end

-- rendering script
assert(splash:go(splash.args.url))
local screenshot = timeit("X-Render-Time", function()

return splash:png()
end)
splash:set_result_content_type("image/png")
return screenshot

end

See also: splash:set_result_status_code, splash:set_result_content_type.

splash:get_viewport_size

Get the browser viewport size.

Signature: width, height = splash:get_viewport_size()

Returns: two numbers: width and height of the viewport in pixels.

Async: no.

1.5. Splash Scripts Reference 53

Splash Documentation, Release 3.5

splash:set_viewport_size

Set the browser viewport size.

Signature: splash:set_viewport_size(width, height)

Parameters:

• width - integer, requested viewport width in pixels;

• height - integer, requested viewport height in pixels.

Returns: nil.

Async: no.

This will change the size of the visible area and subsequent rendering commands, e.g., splash:png, will produce an
image with the specified size.

splash:png uses the viewport size.

Example:

function main(splash)
splash:set_viewport_size(1980, 1020)
assert(splash:go("http://example.com"))
return {png=splash:png()}

end

Note: This will relayout all document elements and affect geometry variables, such as window.innerWidth
and window.innerHeight. However window.onresize event callback will only be invoked during the next
asynchronous operation and splash:png is notably synchronous, so if you have resized a page and want it to react
accordingly before taking the screenshot, use splash:wait.

splash:set_viewport_full

Resize browser viewport to fit the whole page.

Signature: width, height = splash:set_viewport_full()

Returns: two numbers: width and height the viewport is set to, in pixels.

Async: no.

splash:set_viewport_full should be called only after page is loaded, and some time passed after that (use
splash:wait). This is an unfortunate restriction, but it seems that this is the only way to make automatic resizing work
reliably.

See splash:set_viewport_size for a note about interaction with JS.

splash:png uses the viewport size.

Example:

function main(splash)
assert(splash:go("http://example.com"))
assert(splash:wait(0.5))
splash:set_viewport_full()
return {png=splash:png()}

end

54 Chapter 1. Documentation

Splash Documentation, Release 3.5

splash:set_user_agent

Overwrite the User-Agent header for all further requests.

Signature: splash:set_user_agent(value)

Parameters:

• value - string, a value of User-Agent HTTP header.

Returns: nil.

Async: no.

splash:set_custom_headers

Set custom HTTP headers to send with each request.

Signature: splash:set_custom_headers(headers)

Parameters:

• headers - a Lua table with HTTP headers.

Returns: nil.

Async: no.

Headers are merged with WebKit default headers, overwriting WebKit values in case of conflicts.

When headers argument of splash:go is used headers set with splash:set_custom_headers are not applied
to the initial request: values are not merged, headers argument of splash:go has higher priority.

Example:

splash:set_custom_headers({
["Header-1"] = "Value 1",
["Header-2"] = "Value 2",

})

Note: Named arguments are not supported for this function.

See also: splash:on_request.

splash:get_perf_stats

Return performance-related statistics.

Signature: stats = splash:get_perf_stats()

Returns: a table that can be useful for performance analysis.

Async: no.

As of now, this table contains:

• walltime - (float) number of seconds since epoch, analog of os.clock

• cputime - (float) number of cpu seconds consumed by splash process

• maxrss - (int) high water mark number of bytes of RAM consumed by splash process

1.5. Splash Scripts Reference 55

Splash Documentation, Release 3.5

splash:on_request

Register a function to be called before each HTTP request.

Signature: splash:on_request(callback)

Parameters:

• callback - Lua function to call before each HTTP request.

Returns: nil.

Async: no.

splash:on_request callback receives a single request argument (a Request Object).

To get information about a request use request attributes; to change or drop the request before sending use request
methods;

A callback passed to splash:on_request can’t call Splash async methods like splash:wait or splash:go.

Example 1 - log all URLs requested using request.url attribute:

treat = require("treat")

function main(splash, args)
local urls = {}
splash:on_request(function(request)
table.insert(urls, request.url)

end)

assert(splash:go(splash.args.url))
return treat.as_array(urls)

end

Example 2 - to log full request information use request.info attribute; don’t store request objects directly:

treat = require("treat")
function main(splash)

local entries = treat.as_array({})
splash:on_request(function(request)

table.insert(entries, request.info)
end)
assert(splash:go(splash.args.url))
return entries

end

Example 3 - drop all requests to resources containing “.css” in their URLs (see request:abort):

splash:on_request(function(request)
if string.find(request.url, ".css") ~= nil then

request.abort()
end

end)

Example 4 - replace a resource (see request:set_url):

splash:on_request(function(request)
if request.url == 'http://example.com/script.js' then

request:set_url('http://mydomain.com/myscript.js')

(continues on next page)

56 Chapter 1. Documentation

Splash Documentation, Release 3.5

(continued from previous page)

end
end)

Example 5 - set a custom proxy server, with credentials passed in an HTTP request to Splash (see request:set_proxy):

splash:on_request(function(request)
request:set_proxy{

host = "0.0.0.0",
port = 8990,
username = splash.args.username,
password = splash.args.password,

}
end)

Example 6 - discard requests which take longer than 5 seconds to complete, but allow up to 15 seconds for the first
request (see request:set_timeout):

local first = true
splash.resource_timeout = 5
splash:on_request(function(request)

if first then
request:set_timeout(15.0)
first = false

end
end)

Note: splash:on_request doesn’t support named arguments.

See also: splash:on_response, splash:on_response_headers, splash:on_request_reset, treat, Request Object.

splash:on_response_headers

Register a function to be called after response headers are received, before response body is read.

Signature: splash:on_response_headers(callback)

Parameters:

• callback - Lua function to call for each response after response headers are received.

Returns: nil.

Async: no.

splash:on_response_headers callback receives a single response argument (a Response Object).

response.body is not available in a splash:on_response_headers callback because response body is not read yet. That’s
the point of splash:on_response_headers method: you can abort reading of the response body using response:abort
method.

A callback passed to splash:on_response_headers can’t call Splash async methods like splash:wait or splash:go.
response object is deleted after exiting from a callback, so you cannot use it outside a callback.

Example 1 - log content-type headers of all responses received while rendering

1.5. Splash Scripts Reference 57

Splash Documentation, Release 3.5

function main(splash)
local all_headers = {}
splash:on_response_headers(function(response)

local content_type = response.headers["Content-Type"]
all_headers[response.url] = content_type

end)
assert(splash:go(splash.args.url))
return all_headers

end

Example 2 - abort reading body of all responses with content type text/css

function main(splash, args)
splash:on_response_headers(function(response)
local ct = response.headers["Content-Type"]
if ct == "text/css" then

response.abort()
end

end)

assert(splash:go(args.url))
return {
png=splash:png(),
har=splash:har()

}
end

Example 3 - extract all cookies set by website without downloading response bodies

function main(splash)
local cookies = ""
splash:on_response_headers(function(response)

local response_cookies = response.headers["Set-cookie"]
cookies = cookies .. ";" .. response_cookies
response.abort()

end)
assert(splash:go(splash.args.url))
return cookies

end

Note: splash:on_response_headers doesn’t support named arguments.

See also: splash:on_request, splash:on_response, splash:on_response_headers_reset, Response Object.

splash:on_response

Register a function to be called after response is downloaded.

Signature: splash:on_response(callback)

Parameters:

• callback - Lua function to call for each response after it is downloaded.

Returns: nil.

Async: no.

58 Chapter 1. Documentation

Splash Documentation, Release 3.5

splash:on_response callback receives a single response argument (a Response Object).

By default, this response object doesn’t have response.body attribute. To enable it, use
splash.response_body_enabled option or request:enable_response_body method.

Note: splash:on_response doesn’t support named arguments.

See also: splash:on_request, splash:on_response_headers, splash:on_response_reset, Response Object,
splash.response_body_enabled, request:enable_response_body.

splash:on_request_reset

Remove all callbacks registered by splash:on_request.

Signature: splash:on_request_reset()

Returns: nil

Async: no.

splash:on_response_headers_reset

Remove all callbacks registered by splash:on_response_headers.

Signature: splash:on_response_headers_reset()

Returns: nil

Async: no.

splash:on_response_reset

Remove all callbacks registered by splash:on_response.

Signature: splash:on_response_reset()

Returns: nil

Async: no.

splash:get_version

Get Splash major and minor version.

Signature: version_info = splash:get_version()

Returns: A table with version information.

Async: no.

As of now, this table contains:

• splash - (string) Splash version

• major - (int) Splash major version

• minor - (int) Splash minor version

• python - (string) Python version

1.5. Splash Scripts Reference 59

Splash Documentation, Release 3.5

• qt - (string) Qt version

• pyqt - (string) PyQt version

• webkit - (string) WebKit version

• chromium - (string) Chromium version

• sip - (string) SIP version

• twisted - (string) Twisted version

Example:

function main(splash)
local version = splash:get_version()
if version.major < 2 and version.minor < 8 then

error("Splash 1.8 or newer required")
end

end

splash:mouse_click

Trigger mouse click event in web page.

Signature: splash:mouse_click(x, y)

Parameters:

• x - number with x position of element to be clicked (distance from the left, relative to the current viewport)

• y - number with y position of element to be clicked (distance from the top, relative to the current viewport)

Returns: nil

Async: no.

Coordinates for mouse events must be relative to viewport.

If you want to click on element an easy way is to use splash:select with element:mouse_click:

local button = splash:select('button')
button:mouse_click()

You also can implement it using splash:mouse_click; use JavaScript getClientRects to get coordinates of html element:

-- Get button element dimensions with javascript and perform mouse click.
function main(splash)

assert(splash:go(splash.args.url))
local get_dimensions = splash:jsfunc([[

function () {
var rect = document.getElementById('button').getClientRects()[0];
return {"x": rect.left, "y": rect.top}

}
]])
splash:set_viewport_full()
splash:wait(0.1)
local dimensions = get_dimensions()
-- FIXME: button must be inside a viewport
splash:mouse_click(dimensions.x, dimensions.y)

(continues on next page)

60 Chapter 1. Documentation

https://developer.mozilla.org/en/docs/Web/API/Element/getClientRects

Splash Documentation, Release 3.5

(continued from previous page)

-- Wait split second to allow event to propagate.
splash:wait(0.1)
return splash:html()

end

Unlike element:mouse_click, splash:mouse_click is not async. Mouse events are not propagated immediately, to see
consequences of click reflected in page source you must call splash:wait if you use splash:mouse_click.

Element on which action is performed must be inside viewport (must be visible to the user). If element is outside
viewport and user needs to scroll to see it, you must either scroll to the element (using JavaScript, splash.scroll_position
or e.g. element:scrollIntoViewIfNeeded()) or set viewport to full with splash:set_viewport_full.

Note: element:mouse_click scrolls automatically, unlike splash:mouse_click.

Under the hood splash:mouse_click performs splash:mouse_press followed by splash:mouse_release.

At the moment only left click is supported.

See also: element:mouse_click, splash:mouse_press, splash:mouse_release, splash:mouse_hover,
splash.scroll_position.

splash:mouse_hover

Trigger mouse hover (JavaScript mouseover) event in web page.

Signature: splash:mouse_hover(x, y)

Parameters:

• x - number with x position of element to be hovered on (distance from the left, relative to the current viewport)

• y - number with y position of element to be hovered on (distance from the top, relative to the current viewport)

Returns: nil

Async: no.

See notes about mouse events in splash:mouse_click.

See also: element:mouse_hover.

splash:mouse_press

Trigger mouse press event in web page.

Signature: splash:mouse_press(x, y)

Parameters:

• x - number with x position of element over which mouse button is pressed (distance from the left, relative to the
current viewport)

• y - number with y position of element over which mouse button is pressed (distance from the top, relative to the
current viewport)

Returns: nil

Async: no.

See notes about mouse events in splash:mouse_click.

1.5. Splash Scripts Reference 61

Splash Documentation, Release 3.5

splash:mouse_release

Trigger mouse release event in web page.

Signature: splash:mouse_release(x, y)

Parameters:

• x - number with x position of element over which mouse button is released (distance from the left, relative to
the current viewport)

• y - number with y position of element over which mouse button is released (distance from the top, relative to
the current viewport)

Returns: nil

Async: no.

See notes about mouse events in splash:mouse_click.

splash:with_timeout

Run the function with the allowed timeout

Signature: ok, result = splash:with_timeout(func, timeout)

Parameters:

• func - the function to run

• timeout - timeout, in seconds

Returns: ok, result pair. If ok is not true then error happened during the function call or the timeout expired;
result provides an information about error type. If result is equal to timeout then the specified timeout period
elapsed. Otherwise, if ok is true then result contains the result of the executed function. If your function returns
several values, they will be assigned to the next variables to result.

Async: yes.

Example 1:

function main(splash, args)
local ok, result = splash:with_timeout(function()
-- try commenting out splash:wait(3)
splash:wait(3)
assert(splash:go(args.url))

end, 2)

if not ok then
if result == "timeout_over" then
return "Cannot navigate to the url within 2 seconds"

else
return result

end
end
return "Navigated to the url within 2 seconds"

end

Example 2 - the function returns several values

62 Chapter 1. Documentation

Splash Documentation, Release 3.5

function main(splash)
local ok, result1, result2, result3 = splash:with_timeout(function()

splash:wait(0.5)
return 1, 2, 3

end, 1)

return result1, result2, result3
end

Note that if the specified timeout period elapsed Splash will try to interrupt the running function. However, Splash
scripts are executed in cooperative multitasking manner and because of that sometimes Splash won’t be able to stop
your running function upon timeout expiration. In two words, cooperative multitasking means that the managing
program (in our example, it is Splash scripting engine) won’t stop the running function if it doesn’t ask for that. In
Splash scripting the running function can be interrupted only if some async operation was called. On the contrary, non
of the sync operations can be interrupted.

Note: Splash scripts are executing in cooperative multitasking manner. You should be careful while running sync
functions.

Let’s see the difference in examples.

Example 3:

function main(splash)
local ok, result = splash:with_timeout(function()

splash:go(splash.args.url) -- during this operation the current function can
→˓be stopped

splash:evaljs(long_js_operation) -- during JS function evaluation the
→˓function cannot be stopped

local png = splash:png() -- sync operation and during it the function cannot
→˓be stopped

return png
end, 0.1)

return result
end

splash:send_keys

Send keyboard events to page context.

Signature: splash:send_keys(keys)

Parameters

• keys - string representing the keys to be sent as keyboard events.

Returns: nil

Async: no.

Key sequences are specified by using a small subset of emacs edmacro syntax:

• whitespace is ignored and only used to separate the different keys

• characters are literally represented

1.5. Splash Scripts Reference 63

https://en.wikipedia.org/wiki/Cooperative_multitasking
https://en.wikipedia.org/wiki/Cooperative_multitasking

Splash Documentation, Release 3.5

• words within brackets represent function keys, like <Return>, <Left> or <Home>. See Qt docs for a full
list of function keys. <Foo> will try to match Qt::Key_Foo.

Following table shows some examples of macros and what they would generate on an input:

Macro Result
Hello World HelloWorld
Hello <Space> World Hello World
< S p a c e > <Space>
Hello <Home> <Delete> ello
Hello <Backspace> Hell

Key events are not propagated immediately until event loop regains control, thus splash:wait must be called to reflect
the events.

See also: element:send_keys, splash:send_text.

splash:send_text

Send text as input to page context, literally, character by character.

Signature: splash:send_text(text)

Parameters:

• text - string to be sent as input.

Returns: nil

Async: no.

Key events are not propagated immediately until event loop regains control, thus splash:wait must be called to reflect
the events.

This function in conjuction with splash:send_keys covers most needs on keyboard input, such as filling in forms and
submitting them.

Example 1: focus first input, fill in a form and submit

function main(splash)
assert(splash:go(splash.args.url))
assert(splash:wait(0.5))
splash:send_keys("<Tab>")
splash:send_text("zero cool")
splash:send_keys("<Tab>")
splash:send_text("hunter2")
splash:send_keys("<Return>")
-- note how this could be translated to
-- splash:send_keys("<Tab> zero <Space> cool <Tab> hunter2 <Return>")
assert(splash:wait(0))
-- ...

end

Example 2: focus inputs with javascript or splash:mouse_click

We can’t always assume that a <Tab> will focus the input we want or an <Enter> will submit a form. Selecting an
input can either be accomplished by focusing it or by clicking it. Submitting a form can also be done by firing a submit
event on the form, or simply by clicking on the submit button.

64 Chapter 1. Documentation

http://doc.qt.io/qt-5/qt.html#Key-enum

Splash Documentation, Release 3.5

The following example will focus an input, fill in a form and click on the submit button using splash:mouse_click. It
assumes there are two arguments passed to splash, username and password.

function main(splash, args)
function focus(sel)

splash:select(sel):focus()
end

assert(splash:go(args.url))
assert(splash:wait(0.5))
focus('input[name=username]')
splash:send_text(args.username)
assert(splash:wait(0))
focus('input[name=password]')
splash:send_text(args.password)
splash:select('input[type=submit]'):mouse_click()
assert(splash:wait(0))
-- Usually, wait for the submit request to finish
-- ...

end

See also: element:send_text, splash:send_keys.

splash:select

Select the first HTML element from DOM of the current web page that matches the specified CSS selector.

Signature: element = splash:select(selector)

Parameters:

• selector - valid CSS selector

Returns: an Element object.

Async: no.

Using splash:select you can get the element that matches your specified CSS selector like using docu-
ment.querySelector in the browser. The returned element is an Element Object which has many useful methods and
almost all methods and attributes that element has in JavaScript.

If the element cannot be found using the specified selector nil will be returned. If your selector is not a valid CSS
selector an error will be raised.

Example 1: select an element which has element class and return class names off all the siblings of the specified
element.

local treat = require('treat')

function main(splash)
assert(splash:go(splash.args.url))
assert(splash:wait(0.5))

local el = splash:select('.element')
local seen = {}
local classNames = {}

while el do
local classList = el.node.classList

(continues on next page)

1.5. Splash Scripts Reference 65

https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector

Splash Documentation, Release 3.5

(continued from previous page)

if classList then
for _, v in ipairs(classList) do
if (not seen[v]) then
classNames[#classNames + 1] = v
seen[v] = true

end
end

end

el = el.node.nextSibling
end

return treat.as_array(classNames)
end

Example 2: assert that the returned element exists

function main(splash)
-- ...
local el = assert(splash:select('.element'))
-- ...

end

splash:select_all

Select the list of HTML elements from DOM of the current web page that match the specified CSS selector.

Signature: elements = splash:select_all(selector)

Parameters:

• selector - valid CSS selector

Returns: a list of Element objects.

Async: no.

This method differs from splash:select by returning the all elements in a table that match the specified selector.

If no elements can be found using the specified selector {} is returned. If the selector is not a valid CSS selector an
error is raised.

Example: select all elements and get their src attributes

local treat = require('treat')

function main(splash)
assert(splash:go(splash.args.url))
assert(splash:wait(0.5))

local imgs = splash:select_all('img')
local srcs = {}

for _, img in ipairs(imgs) do
srcs[#srcs+1] = img.node.attributes.src

end

(continues on next page)

66 Chapter 1. Documentation

Splash Documentation, Release 3.5

(continued from previous page)

return treat.as_array(srcs)
end

splash:on_navigation_locked

Register a function to be called before a request is discarded when navigation is locked.

Signature: splash:on_navigation_locked(callback)

Parameters:

• callback - Lua function to call before a request is discarded.

Returns: nil.

Async: no.

splash:on_navigation_locked callback receives a single request argument (a Request Object).

To get information about a request use request attributes;

A callback passed to splash:on_navigation_locked can’t call Splash async methods like splash:wait or splash:go.

Example 1 - log all URLs discarded using request.url attribute:

treat = require("treat")

function main(splash, args)
local urls = {}
splash:on_navigation_locked(function(request)
table.insert(urls, request.url)

end)

assert(splash:go(splash.args.url))
splash:lock_navigation()
splash:select("a"):mouse_click()
return treat.as_array(urls)

end

splash:on_navigation_locked_reset

Remove all callbacks registered by splash:on_navigation_locked.

Signature: splash:on_navigation_locked_reset()

Returns: nil

Async: no.

1.6 Response Object

Response objects are returned as a result of several Splash methods (like splash:http_get or splash:http_post); they are
are also passed to some of the callbacks (e.g. splash:on_response and splash:on_response_headers callbacks). These
objects contain information about a response.

1.6. Response Object 67

Splash Documentation, Release 3.5

1.6.1 response.url

URL of the response. In case of redirects response.url is a last URL.

This field is read-only.

1.6.2 response.status

HTTP status code of the response.

This field is read-only.

1.6.3 response.ok

true for successful responses and false when error happened.

Example:

local reply = splash:http_get("some-bad-url")
-- reply.ok == false

This field is read-only.

1.6.4 response.headers

A Lua table with HTTP headers (header name => header value). Keys are header names (strings), values are header
values (strings).

Lookups are case-insensitive, so response.headers['content-type'] is the same as response.
headers['Content-Type'].

This field is read-only.

1.6.5 response.info

A Lua table with response data in HAR response format.

This field is read-only.

1.6.6 response.body

Raw response body (a binary object).

If you want to process response body from Lua use treat.as_string to convert it to a Lua string first.

response.body attribute is not available by default in splash:on_response callbacks; use splash.response_body_enabled
or request:enable_response_body to enable it.

1.6.7 response.request

A corresponding Request Object.

This field is read-only.

68 Chapter 1. Documentation

http://www.softwareishard.com/blog/har-12-spec/#response

Splash Documentation, Release 3.5

1.6.8 response:abort

Signature: response:abort()

Returns: nil.

Async: no.

Abort reading of the response body. This method is only available if a response is not read yet - currently you can use
it only in a splash:on_response_headers callback.

1.7 Request Object

Request objects are received by splash:on_request callbacks; they are also available as response.request.

1.7.1 Attributes

Request objects has several attributes with information about a HTTP request. These fields are for information only;
changing them doesn’t change the request to be sent.

request.url

Requested URL.

request.method

HTTP method name in upper case, e.g. “GET”.

request.headers

A Lua table with request HTTP headers (header name => header value). Keys are header names (strings), values are
header values (strings).

Lookups are case-insensitive, so request.headers['content-type'] is the same as request.
headers['Content-Type'].

request.info

A table with request data in HAR request format.

1.7.2 Methods

To change or drop the request before sending use one of the request methods. Note that these methods are only
available before the request is sent (they has no effect if a request is already sent). Currently it means you can only use
them in splash:on_request callbacks.

1.7. Request Object 69

http://www.softwareishard.com/blog/har-12-spec/#request

Splash Documentation, Release 3.5

request:abort

Drop the request.

Signature: request:abort()

Returns: nil.

Async: no.

request:enable_response_body

Enable tracking of response content (i.e. response.body attribute).

Signature: request:enable_response_body()

Returns: nil.

Async: no.

This function allows to enable response content tracking per-request when splash.response_body_enabled is set to
false. Call it in a splash:on_request callback.

request:set_url

Change request URL to a specified value.

Signature: request:set_url(url)

Parameters:

• url - new request URL

Returns: nil.

Async: no.

request:set_proxy

Set a proxy server to use for this request.

Signature: request:set_proxy{host, port, username=nil, password=nil, type='HTTP'}

Parameters:

• host

• port

• username

• password

• type - proxy type; allowed proxy types are ‘HTTP’ and ‘SOCKS5’.

Returns: nil.

Async: no.

Omit username and password arguments if a proxy doesn’t need auth.

When type is set to ‘HTTP’ HTTPS proxying should also work; it is implemented using CONNECT command.

70 Chapter 1. Documentation

Splash Documentation, Release 3.5

request:set_timeout

Set a timeout for this request.

Signature: request:set_timeout(timeout)

Parameters:

• timeout - timeout value, in seconds.

Returns: nil.

Async: no.

If response is not fully received after the timeout, request is aborted. See also: splash.resource_timeout.

request:set_header

Set an HTTP header for this request.

Signature: request:set_header(name, value)

Parameters:

• name - header name;

• value - header value.

Returns: nil.

Async: no.

See also: splash:set_custom_headers

request:set_http2_enabled

Enable or disable HTTP2 support for this request.

Signature: request:set_http2_enabled(true/false)

Parameters:

• value - boolean, whether HTTP2 should be allowed for this request.

Returns: nil.

Async: no.

1.8 Element Object

Element objects wrap JavaScript DOM nodes. They are created whenever some method returns any type of DOM
node (Node, Element, HTMLElement, etc).

splash:select and splash:select_all return element objects; splash:evaljs may also return element objects, but currently
they can’t be inside other objects or arrays - only top-level Node and NodeList is supported.

1.8.1 Methods

To modify or retrieve information about the element you can use the following methods.

1.8. Element Object 71

Splash Documentation, Release 3.5

element:mouse_click

Trigger mouse click event on the element.

Signature: ok, reason = element:mouse_click{x=nil, y=nil}

Parameters:

• x - optional, x coordinate relative to the left corner of the element

• y - optional, y coordinate relative to the top corner of the element

Returns: ok, reason pair. If ok is nil then error happened during the function call; reason provides an infor-
mation about error type.

Async: yes.

If x or y coordinate is not provided, they are set to width/2 and height/2 respectively, and the click is triggered on the
middle of the element.

Coordinates can have a negative value which means the click will be triggered outside of the element.

Example 1: click inside element, but closer to the top left corner:

function main(splash)
-- ...
local element = splash:select('.element')
local bounds = element:bounds()
assert(element:mouse_click{x=bounds.width/3, y=bounds.height/3})
-- ...

end

Example 2: click on the area above the element by 10 pixels

function main(splash)
-- ...
splash:set_viewport_full()
local element = splash:select('.element')
assert(element:mouse_click{y=-10})
-- ...

end

Unlike splash:mouse_click, element:mouse_click waits until clicking is done, so to see consequences of click reflected
in a page there is no need to call splash:wait.

If an element is outside the current viewport, viewport is scrolled to make element visible. If scrolling was necessary,
page is not scrolled back to the original position after the click.

See more about mouse events in splash:mouse_click.

element:mouse_hover

Trigger mouse hover (JavaScript mouseover) event on the element.

Signature: ok, reason = element:mouse_hover{x=0, y=0}

Parameters:

• x - optional, x coordinate relative to the left corner of the element

• y - optional, y coordinate relative to the top corner of the element

72 Chapter 1. Documentation

Splash Documentation, Release 3.5

Returns: ok, reason pair. If ok is nil then error happened during the function call; reason provides an infor-
mation about error type.

Async: no.

If x or y coordinate is not provided, they are set to width/2 and height/2 respectively, and the hover is triggered on the
middle of the element.

Coordinates can have a negative value which means the hover will be triggered outside of the element.

Example 1: mouse hover over top left element corner:

function main(splash)
-- ...
local element = splash:select('.element')
assert(element:mouse_hover{x=0, y=0})
-- ...

end

Example 2: hover over the area above the element by 10 pixels

function main(splash)
-- ...
splash:set_viewport_full()
local element = splash:select('.element')
assert(element:mouse_hover{y=-10})
-- ...

end

Unlike splash:mouse_hover, element:mouse_hover waits until event is propagated, so to see consequences of click
reflected in a page there is no need to call splash:wait.

If an element is outside the current viewport, viewport is scrolled to make element visible. If scrolling was necessary,
page is not scrolled back to the original position.

See more about mouse events in splash:mouse_hover.

element:styles

Return the computed styles of the element.

Signature: styles = element:styles()

Returns: styles is a table with computed styles of the element.

Async: no.

This method returns the result of JavaScript window.getComputedStyle() applied on the element.

Example: get all computed styles and return the font-size property.

function main(splash)
-- ...
local element = splash:select('.element')
return element:styles()['font-size']

end

element:bounds

Return the bounding client rectangle of the element

1.8. Element Object 73

https://developer.mozilla.org/en-US/docs/Web/API/Window/getComputedStyle

Splash Documentation, Release 3.5

Signature: bounds = element:bounds()

Returns: bounds is a table with the client bounding rectangle with the top, right, bottom and left coordinates
and also with width and height values.

Async: no.

Example: get the bounds of the element.

function main(splash)
-- ..
local element = splash:select('.element')
return element:bounds()
-- e.g. bounds is { top = 10, right = 20, bottom = 20, left = 10, height = 10,

→˓width = 10 }
end

element:png

Return a screenshot of the element in PNG format

Signature: shot = element:png{width=nil, scale_method='raster', pad=0}

Parameters:

• width - optional, width of a screenshot in pixels;

• scale_method - optional, method to use when resizing the image, 'raster' or 'vector';

• pad - optional, integer or {left, top, right, bottom} values of padding

Returns: shot is a PNG screenshot data, as a binary object. When the result is empty (e.g. if the element doesn’t
exist in DOM or it isn’t visible) nil is returned.

Async: no.

pad parameter sets the padding of the resulting image. If it is a single integer then the padding from all sides will
be equal. If the value of the padding is positive the resulting screenshot will be expanded by the specified amount of
pixes. And if the value of padding is negative the resulting screenshot will be shrunk by the specified amount of pixels.

Example: return a padded screenshot of the element

function main(splash)
-- ..
local element = splash:select('.element')
return element:png{pad=10}

end

If an element is not in a viewport, viewport temporarily scrolls to make the element visible, then it scrolls back.

See more in splash:png.

element:jpeg

Return a screenshot of the element in JPEG format

Signature: shot = element:jpeg{width=nil, scale_method='raster', quality=75,
region=nil, pad=0}

Parameters:

74 Chapter 1. Documentation

Splash Documentation, Release 3.5

• width - optional, width of a screenshot in pixels;

• scale_method - optional, method to use when resizing the image, 'raster' or 'vector';

• quality - optional, quality of JPEG image, integer in range from 0 to 100;

• pad - optional, integer or {left, top, right, bottom} values of padding

Returns: shot is a JPEG screenshot data, as a binary object. When the result is empty (e.g. if the element doesn’t
exist in DOM or it isn’t visible) nil is returned.

Async: no.

pad parameter sets the padding of the resulting image. If it is a single integer then the padding from all sides will
be equal. If the value of the padding is positive the resulting screenshot will be expanded by the specified amount of
pixes. And if the value of padding is negative the resulting screenshot will be shrunk by the specified amount of pixes.

If an element is not in a viewport, viewport temporarily scrolls to make the element visible, then it scrolls back.

See more in splash:jpeg.

element:visible

Check whether the element is visible.

Signature: visible = element:visible()

Returns: visible indicates whether the element is visible.

Async: no.

element:focused

Check whether the element has focus.

Signature: focused = element:focused()

Returns: focused indicates whether the element is focused.

Async: no.

element:text

Fetch a text information from the element

Signature: text = element:text()

Returns: text is a text content of the element.

Async: no.

It tries to return the trimmed value of the following JavaScript Node properties:

• textContent

• innerText

• value

If all of them are empty an empty string is returned.

1.8. Element Object 75

Splash Documentation, Release 3.5

element:info

Get useful information about the element.

Signature: info = element:info()

Returns: info is a table with element info.

Async: no.

Info is a table with the following fields:

• nodeName - node name in a lower case (e.g. h1)

• attributes - table with attributes names and its values

• tag - html string representation of the element

• html - inner html of the element

• text - inner text of the element

• x - x coordinate of the element

• y - y coordinate of the element

• width - width of the element

• height - height of the element

• visible - flag representing if the element is visible

element:field_value

Get value of the field element (input, select, textarea, button).

Signature: ok, value = element:field_value()

Returns: ok, value pair. If ok is nil then error happened during the function call; value provides an information
about error type. When there is no error ok is true and value is a value of the element.

Async: no.

This method works in the following way:

• if the element type is select:

– if the multiple attribute is true it returns a table with the selected values;

– otherwise it returns the value of the select;

• if the element has attribute type="radio":

– if it’s checked returns its value;

– other it returns nil

• if the element has attribute type="checkbox" it returns bool value

• otherwise it returns the value of the value attribute or empty string if it doesn’t exist

76 Chapter 1. Documentation

Splash Documentation, Release 3.5

element:form_values

Return a table with form values if the element type is form

Signature: form_values, reason = element:form_values{values='auto'}

Parameters:

• values - type of the return value, can be one of 'auto', 'list' or 'first'

Returns: form_values, reason pair. If form_values is nil then error happened during the function call or
node type is not form; reason provides an information about error type; otherwise form_values is a table with
element names as keys and values as values.

Async: no.

The returned values depend on values parameter. It can be in 3 states:

'auto' Returned values are tables or singular values depending on the form element type:

• if the element is <select multiple> the returned value is a table with the selected option values or
text contents if the value attribute is missing;

• if the form has several elements with the same name attribute the returned value is a table with all values
of that elements;

• otherwise it is a string (for text and radio inputs), bool (for checkbox inputs) or nil the value of value
attribute.

This result type is convenient if you’re working with the result in a Lua script.

'list' Returned values always are tables (lists), even if the form element can be a singular value, useful for forms
with unknown structure. Few notes:

• if the element is a checkbox input and a value attribute then the table will contain that value;

• if the element is <select multiple> and they are several of them with the same names then their
values will be concatenated with the previous ones

This result type is convenient if you’re writing generic form-handling code - unlike auto there is no need to
support multiple data types.

'first' Returned values always are singular values, even if the form element can multiple value. If the element
has multiple values only the first one will be selected.

Example 1: return the values of the following login form

<form id="login">
<input type="text" name="username" value="admin" />
<input type="password" name="password" value="pass" />
<input type="checkbox" name="remember" value="yes" checked />

</form>

function main(splash)
-- ...
local form = splash:select('#login')
return assert(form:form_values())

end

-- returned values are
{ username = 'admin', password = 'pass', remember = true }

Example 2: when values is equal to 'list'

1.8. Element Object 77

Splash Documentation, Release 3.5

function main(splash)
-- ...
local form = splash:select('#login')
return assert(form:form_values{values='list'}))

end

-- returned values are
{ username = ['admin'], password = ['pass'], remember = ['checked'] }

Example 3: return the values of the following form when values is equal to 'first'

<form>
<input type="text" name="foo[]" value="coffee"/>
<input type="text" name="foo[]" value="milk"/>
<input type="text" name="foo[]" value="eggs"/>
<input type="text" name="baz" value="foo"/>
<input type="radio" name="choice" value="yes"/>
<input type="radio" name="choice" value="no" checked/>
<input type="checkbox" name="check" checked/>

<select multiple name="selection">
<option value="1" selected>1</option>
<option value="2">2</option>
<option value="3" selected>2</option>

</select>
</form>

function main(splash)
-- ...
local form = splash:select('form')
return assert(form:form_values(false))

end

-- returned values are
{

['foo[]'] = 'coffee',
baz = 'foo',
choice = 'no',
check = false,
selection = '1'

}

element:fill

Fill the form with the provided values

Signature: ok, reason = element:fill(values)

Parameters:

• values - table with input names as keys and values as input values

Returns: ok, reason pair. If ok is nil then error happened during the function call; reason provides an infor-
mation about error type.

Async: no.

78 Chapter 1. Documentation

Splash Documentation, Release 3.5

In order to fill your form your inputs must have name property and this method will select those input using that
property.

Example 1: get the current values, change password and fill the form

<form id="login">
<input type="text" name="username" value="admin" />
<input type="password" name="password" value="pass" />

</form>

function main(splash)
-- ...
local form = splash:select('#login')
local values = assert(form:form_values())
values.password = "l33t"
assert(form:fill(values))

end

Example 2: fill more complex form

<form id="signup" action="/signup">
<input type="text" name="name"/>
<input type="radio" name="gender" value="male"/>
<input type="radio" name="gender" value="female"/>

<select multiple name="hobbies">
<option value="sport">Sport</option>
<option value="cars">Cars</option>
<option value="games">Video Games</option>

</select>

<button type="submit">Sign Up</button>
</form>

function main(splash)
assert(splash:go(splash.args.url))
assert(splash:wait(0.1))

local form = splash:select('#signup')
local values = {
name = 'user',
gender = 'female',
hobbies = {'sport', 'games'},

}

assert(form:fill(values))
assert(form:submit())
-- ...

end

element:send_keys

Send keyboard events to the element.

Signature: ok, reason = element:send_keys(keys)

Parameters

1.8. Element Object 79

Splash Documentation, Release 3.5

• keys - string representing the keys to be sent as keyboard events.

Returns: ok, reason pair. If ok is nil then error happened during the function call; reason provides an infor-
mation about error type.

Async: no.

This method does the following:

• clicks on the element

• send the specified keyboard events

See more about keyboard events in in splash:send_keys.

element:send_text

Send keyboard events to the element.

Signature: ok, reason = element:send_text(text)

Parameters

• text - string to be sent as input.

Returns: ok, reason pair. If ok is nil then error happened during the function call; reason provides an infor-
mation about error type.

Async: no.

This method does the following:

• clicks on the element

• send the specified text to the element

See more about it in splash:send_text.

element:submit

Submit the form element.

Signature: ok, reason = element:submit()

Returns: ok, reason pair. If ok is nil then error happened during the function call (e.g. you are trying to submit
on element which is not a form); reason provides an information about error type.

Async: no.

Example: get the form, fill with values and submit it

<form id="login" action="/login">
<input type="text" name="username" />
<input type="password" name="password" />
<input type="checkbox" name="remember" />
<button type="submit">Submit</button>

</form>

function main(splash)
-- ...
local form = splash:select('#login')
assert(form:fill({ username='admin', password='pass', remember=true }))

(continues on next page)

80 Chapter 1. Documentation

Splash Documentation, Release 3.5

(continued from previous page)

assert(form:submit())
-- ...

end

element:exists

Check whether the element exists in DOM. If the element doesn’t exist some of the methods will fail, returning the
error flag.

Signature: exists = element:exists()

Returns: exists indicated whether the element exists.

Async: no.

Note: Don’t use splash:select(..):exists() to check if an element is present - splash:select returns nil
if selector returns nothing. Check for nil instead.

element:exists() should only be used if you already have an Element instance, but suspect it can be removed
from the current DOM.

There are several reasons why the element can be absent from DOM. One of the reasons is that the element was
removed by some JavaScript code.

Example 1: the element was removed by JS code

function main(splash)
-- ...
local element = splash:select('.element')
assert(splash:runjs('document.write("<body></body>")'))
assert(splash:wait(0.1))
local exists = element:exists() -- exists will be `false`
-- ...

end

Another reason is that the element was created by script and not inserted into DOM.

Example 2: the element is not inserted into DOM

function main(splash)
-- ...
local element = splash:select('.element')
local cloned = element.node:cloneNode() -- the cloned element isn't in DOM
local exists = cloned:exists() -- exists will be `false`
-- ...

end

1.8.2 DOM Methods

In addition to custom Splash-specific methods Element supports many common DOM HTMLElement methods.

1.8. Element Object 81

Splash Documentation, Release 3.5

Usage

To use these methods just call them on element. For example, to check if an element has a specific attribute you can
use hasAttribute method:

function main(splash)
-- ...
if splash:select('.element'):hasAttribute('foo') then

-- ...
end
-- ...

end

Another example: to make sure element is in a viewport, you can call its scrollIntoViewIfNeeded method:

function main(splash)
-- ...
splash:select('.element'):scrollIntoViewIfNeeded()
-- ...

end

Supported DOM methods

Methods inherited from EventTarget:

• addEventListener

• removeEventListener

Methods inherited from HTMLElement:

• blur

• click

• focus

Methods inherited from Element:

• getAttribute

• getAttributeNS

• getBoundingClientRect

• getClientRects

• getElementsByClassName

• getElementsByTagName

• getElementsByTagNameNS

• hasAttribute

• hasAttributeNS

• hasAttributes

• querySelector

• querySelectorAll

• releasePointerCapture

82 Chapter 1. Documentation

https://developer.mozilla.org/en-US/docs/Web/API/Element/hasAttribute
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement
https://developer.mozilla.org/en-US/docs/Web/API/Element

Splash Documentation, Release 3.5

• remove

• removeAttribute

• removeAttributeNS

• requestFullscreen

• requestPointerLock

• scrollIntoView

• scrollIntoViewIfNeeded

• setAttribute

• setAttributeNS

• setPointerCapture

Methods inherited from Node:

• appendChild

• cloneNode

• compareDocumentPosition

• contains

• hasChildNodes

• insertBefore

• isDefaultNamespace

• isEqualNode

• isSameNode

• lookupPrefix

• lookupNamespaceURI

• normalize

• removeChild

• replaceChild

These methods should work as their JS counterparts, but in Lua.

For example, you can attach event handlers using element:addEventListener(event, listener).

function main(splash)
-- ...
local element = splash:select('.element')
local x, y = 0, 0

local store_coordinates = function(event)
x = event.clientX
y = event.clientY

end

element:addEventListener('click', store_coordinates)
assert(splash:wait(10))
return x, y

end

1.8. Element Object 83

https://developer.mozilla.org/en-US/docs/Web/API/Node

Splash Documentation, Release 3.5

1.8.3 Attributes

element.node

element.node has all exposed element DOM methods and attributes available, but not custom Splash methods and
attributes. Use it for readability if you want to be more explicit. It also allows to avoid possible naming conflicts in
future.

For example, to get element’s innerHTML one can use .node.innerHTML:

function main(splash)
-- ...
return {html=splash:select('.element').node.innerHTML}

end

element.inner_id

ID of the inner representation of the element, read-only. It may be useful for comparing element instances for the
equality.

Example:

function main(splash)
-- ...

local same = element2.inner_id == element2.inner_id

-- ...
end

1.8.4 DOM Attributes

Usage

Element objects also provide almost all DOM element attributes. For example, get element’s node name (p, div, a,
etc.):

function main(splash)
-- ...
local tag_name = splash:select('.foo').nodeName
-- ...

end

Many of attributes are writable, not only readable - you can e.g. set innerHTML of an element:

function main(splash)
-- ...
splash:select('.foo').innerHTML = "hello"
-- ...

end

Supported DOM attributes

The list of supported properties (some of them are mutable, other are read-only):

84 Chapter 1. Documentation

Splash Documentation, Release 3.5

Properties inherited from HTMLElement:

• accessKey

• accessKeyLabel (read-only)

• contentEditable

• isContentEditable (read-only)

• dataset (read-only)

• dir

• draggable

• hidden

• lang

• offsetHeight (read-only)

• offsetLeft (read-only)

• offsetParent (read-only)

• offsetTop (read-only)

• spellcheck

• style - a table with styles which can be modified

• tabIndex

• title

• translate

Properties inherited from Element:

• attributes (read-only) - a table with attributes of the element

• classList (read-only) - a table with class names of the element

• className

• clientHeight (read-only)

• clientLeft (read-only)

• clientTop (read-only)

• clientWidth (read-only)

• id

• innerHTML

• localeName (read-only)

• namespaceURI (read-only)

• nextElementSibling (read-only)

• outerHTML

• prefix (read-only)

• previousElementSibling (read-only)

• scrollHeight (read-only)

1.8. Element Object 85

https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement
https://developer.mozilla.org/en-US/docs/Web/API/Element

Splash Documentation, Release 3.5

• scrollLeft

• scrollTop

• scrollWidth (read-only)

• tabStop

• tagName (read-only)

Properties inherited from Node:

• baseURI (read-only)

• childNodes (read-only)

• firstChild (read-only)

• lastChild (read-only)

• nextSibling (read-only)

• nodeName (read-only)

• nodeType (read-only)

• nodeValue

• ownerDocument (read-only)

• parentNode (read-only)

• parentElement (read-only)

• previousSibling (read-only)

• rootNode (read-only)

• textContent

Also, you can attach event handlers to the specified event. When the handler is called it will receive event table with
the almost all available methods and properties.

function main(splash)
-- ...
local element = splash:select('.element')

local x, y = 0, 0

element.onclick = function(event)
event:preventDefault()
x = event.clientX
y = event.clientY

end

assert(splash:wait(10))

return x, y
end

Use element:addEventListener() method if you want to attach multiple event handlers for an event.

86 Chapter 1. Documentation

https://developer.mozilla.org/en-US/docs/Web/API/Node

Splash Documentation, Release 3.5

1.9 Working with Binary Data

1.9.1 Motivation

Splash assumes that most strings in a script are encoded to UTF-8. This is true for HTML content - even if the original
response was not UTF-8, internally browser works with UTF-8, so splash:html result is always UTF-8.

When you return a Lua table from the main function Splash encodes it to JSON; JSON is a text protocol which can’t
handle arbitrary binary data, so Splash assumes all strings are UTF-8 when returning a JSON result.

But sometimes it is necessary to work with binary data: for example, it could be raw image data returned by splash:png
or a response body of a non-UTF-8 page returned by splash:http_get.

1.9.2 Binary Objects

To pass non-UTF8 data to Splash (returning it as a result of main or passing as arguments to splash methods) a
script may mark it as a binary object using treat.as_binary function.

Some of the Splash functions already return binary objects: splash:png, splash:jpeg; response.body attribute is also a
binary object.

A binary object can be returned as a main result directly. It is the reason the following example works (a basic
render.png implementation in Lua):

-- basic render.png emulation
function main(splash)

assert(splash:go(splash.args.url))
return splash:png()

end

All binary objects have content-type attached. For example, splash:png result will have content-type image/png.

When returned directly, a binary object data is used as-is for the response body, and Content-Type HTTP header is
set to the content-type of a binary object. So in the previous example the result will be a PNG image with a proper
Content-Type header.

To construct your own binary objects use treat.as_binary function. For example, let’s return a 1x1px black GIF image
as a response:

treat = require("treat")
base64 = require("base64")

function main(splash)
local gif_b64 = "AQABAIAAAAAAAAAAACH5BAAAAAAALAAAAAABAAEAAAICTAEAOw=="
local gif_bytes = base64.decode(gif_b64)
return treat.as_binary(gif_bytes, "image/gif")

end

When main result is returned, binary object content-type takes a priority over a value set by
splash:set_result_content_type. To override content-type of a binary object create another binary object with a
required content-type:

lcoal treat = require("treat")
function main(splash)

-- ...
local img = splash:png()

(continues on next page)

1.9. Working with Binary Data 87

Splash Documentation, Release 3.5

(continued from previous page)

return treat.as_binary(img, "image/x-png") -- default was "image/png"
end

When a binary object is serialized to JSON it is auto-encoded to base64 before serializing. For example, it may happen
when a table is returned as a main function result:

function main(splash)
assert(splash:go(splash.args.url))

-- result is a JSON object {"png": "...base64-encoded image data"}
return {png=splash:png()}

end

1.10 Available Lua Libraries

When Sandbox is disabled all standard Lua modules are available; with a Sandbox ON (default) only some of them
can be used. See Standard Library for more.

Splash ships several non-standard modules by default:

• json - encoded/decode JSON data

• base64 - encode/decode Base64 data

• treat - fine-tune the way Splash works with your Lua varaibles and returns the result.

Unlike standard modules, custom modules should to be imported before use, for example:

base64 = require("base64")
function main(splash)

return base64.encode('hello')
end

It is possible to add more Lua libraries to Splash using Custom Lua Modules feature.

1.10.1 Standard Library

The following standard Lua 5.2 libraries are available to Splash scripts when Sandbox is enabled (default):

• string

• table

• math

• os

Aforementioned libraries are pre-imported; there is no need to require them.

Note: Not all functions from these libraries are currently exposed when Sandbox is enabled. Check the code for
detailed list of functions available.

88 Chapter 1. Documentation

http://www.lua.org/manual/5.2/manual.html#6.4
http://www.lua.org/manual/5.2/manual.html#6.5
http://www.lua.org/manual/5.2/manual.html#6.6
http://www.lua.org/manual/5.2/manual.html#6.9
https://github.com/scrapinghub/splash/blob/master/splash/lua_modules/sandbox.lua

Splash Documentation, Release 3.5

1.10.2 json

A library to encode data to JSON and decode it from JSON to Lua data structure. It provides 2 functions: json.encode
and json.decode.

json.encode

Encode data to JSON.

Signature: result = json.encode(obj)

Parameters:

• obj - an object to encode.

Returns: a string with JSON representation of obj.

JSON format doesn’t support binary data; json.encode handles Binary Objects by automatically encoding them to
Base64 before putting to JSON.

json.decode

Decode JSON string to a Lua object.

Signature: decoded = json.decode(s)

Parameters:

• s - a string with JSON.

Returns: decoded Lua object.

Example:

json = require("json")

function main(splash)
local resp = splash:http_get("http:/myapi.example.com/resource.json")
local decoded = json.decode(resp.content.text)
return {myfield=decoded.myfield}

end

Note that unlike json.encode function, json.decode doesn’t have any special features to support binary data. It means
that if you want to get a binary object encoded by json.encode back, you need to decode data from base64 yourselves.
This can be done in a Lua script using base64 module.

1.10.3 base64

A library to encode/decode strings to/from Base64. It provides 2 functions: base64.encode and base64.decode. These
functions are handy if you need to pass some binary data in a JSON request or response.

base64.encode

Encode a string or a binary object to Base64.

Signature: encoded = base64.encode(s)

Parameters:

1.10. Available Lua Libraries 89

Splash Documentation, Release 3.5

• s - a string or a binary object to encode.

Returns: a string with Base64 representation of s.

base64.decode

Decode a string from base64.

Signature: data = base64.decode(s)

Parameters:

• s - a string to decode.

Returns: a Lua string with decoded data.

Note that base64.decode may return a non-UTF-8 Lua string, so the result may be unsafe to pass back to Splash (as a
part of main function result or as an argument to splashmethods). It is fine if you know the original data was ASCII
or UTF8, but if you work with unknown data, “real” binary data or just non-UTF-8 content then call treat.as_binary
on the result of base64.decode.

Example - return 1x1px black gif:

treat = require("treat")
base64 = require("base64")

function main(splash)
local gif_b64 = "AQABAIAAAAAAAAAAACH5BAAAAAAALAAAAAABAAEAAAICTAEAOw=="
local gif_bytes = base64.decode(gif_b64)
return treat.as_binary(gif_bytes, "image/gif")

end

1.10.4 treat

treat.as_binary

Get a binary object for a string.

Signature: bytes = treat.as_binary(s, content_type="application/octet-stream")

Parameters:

• s - a string.

• content-type - Content-Type of s.

Returns: a binary object.

treat.as_binary returns a binary object for a string. This binary object no longer can be processed from Lua, but it can
be returned as a main() result as-is.

treat.as_string

Get a Lua string with a raw data from a binary object.

Signature: s, content_type = treat.as_string(bytes)

Parameters:

• bytes - a binary object.

90 Chapter 1. Documentation

Splash Documentation, Release 3.5

Returns: (s, content_type) pair: a Lua string with raw data and its Content-Type.

treat.as_string “unwraps” a binary object and returns a plain Lua string which can be processed from Lua. If the
resulting string is not encoded to UTF-8 then it is still possible to process it in Lua, but it is not safe to return it as a
main result or pass to Splash functions. Use treat.as_binary to convert processed string to a binary object if you need
to pass it back to Splash.

treat.as_array

Mark a Lua table as an array (for JSON encoding and Lua -> JS conversions).

Signature: tbl = treat.as_array(tbl)

Parameters:

• tbl - a Lua table.

Returns: the same table.

JSON can represent arrays and objects, but in Lua there is no distinction between them; both key-value mappings and
arrays are stored in Lua tables.

By default, Lua tables are converted to JSON objects when returning a result from Splash main function and when
using json.encode or ref:splash-jsfunc:

function main(splash)
-- client gets {"foo": "bar"} JSON object
return {foo="bar"}

end

It can lead to unexpected results with array-like Lua tables:

function main(splash)
-- client gets {"1": "foo", "2": "bar"} JSON object
return {"foo", "bar"}

end

treat.as_array allows to mark tables as JSON arrays:

treat = require("treat")

function main(splash)
local tbl = {"foo", "bar"}
treat.as_array(tbl)

-- client gets ["foo", "bar"] JSON object
return tbl

end

This function modifies its argument inplace, but as a shortcut it returns the same table; it allows to simplify the
code:

treat = require("treat")
function main(splash)

-- client gets ["foo", "bar"] JSON object
return treat.as_array({"foo", "bar"})

end

1.10. Available Lua Libraries 91

Splash Documentation, Release 3.5

Note: There is no autodetection of table type because {} Lua table is ambiguous: it can be either a JSON array
or as a JSON object. With table type autodetection it is easy to get a wrong output: even if some data is always an
array, it can be suddenly exported as an object when an array is empty. To avoid surprises Splash requires an explicit
treat.as_array call.

1.10.5 Adding Your Own Modules

Splash provides a way to use custom Lua modules (stored on server) from scripts passed via HTTP API. This allows
to

1. reuse code without sending it over network again and again;

2. use third-party Lua modules;

3. implement features which need unsafe code and expose them safely in a sandbox.

Note: To learn about Lua modules check e.g. http://lua-users.org/wiki/ModulesTutorial. Please prefer “the new
way” of writing modules because it plays better with a sandbox. A good Lua modules style guide can be found here:
http://hisham.hm/2014/01/02/how-to-write-lua-modules-in-a-post-module-world/

Setting Up

To use custom Lua modules, do the following steps:

1. setup the path for Lua modules and add your modules there;

2. tell Splash which modules are enabled in a sandbox;

3. use Lua require function from a script to load a module.

To setup the path for Lua modules start Splash with --lua-package-path option. --lua-package-path
value should be a semicolon-separated list of places where Lua looks for modules. Each entry should have a ? in it
that’s replaced with the module name.

Example:

$ python3 -m splash.server --lua-package-path "/etc/splash/lua_modules/?.lua;/home/
→˓myuser/splash-modules/?.lua"

Note: If you use Splash installed using Docker see Folders Sharing for more info on how to setup paths.

Note: For the curious: --lua-package-path value is added to Lua package.path.

When you use a Lua sandbox (default) Lua require function is restricted when used in scripts: it only allows to load
modules from an allowlist. This allowlist is empty by default, i.e. by default you can require nothing. To make your
modules available for scripts start Splash with --lua-sandbox-allowed-modules option. It should contain a
semicolon-separated list of Lua module names allowed in a sandbox:

$ python3 -m splash.server --lua-sandbox-allowed-modules "foo;bar" --lua-package-path
→˓"/etc/splash/lua_modules/?.lua"

92 Chapter 1. Documentation

http://lua-users.org/wiki/ModulesTutorial
http://hisham.hm/2014/01/02/how-to-write-lua-modules-in-a-post-module-world/

Splash Documentation, Release 3.5

After that it becomes possible to load these modules from Lua scripts using require:

local foo = require("foo")
function main(splash)

return {result=foo.myfunc()}
end

Writing Modules

A basic module could look like the following:

-- mymodule.lua
local mymodule = {}

function mymodule.hello(name)
return "Hello, " .. name

end

return mymodule

Usage in a script:

local mymodule = require("mymodule")

function main(splash)
return mymodule.hello("world!")

end

Many real-world modules will likely want to use splash object. There are several ways to write such modules. The
simplest way is to use functions that accept splash as an argument:

-- utils.lua
local utils = {}

-- wait until `condition` function returns true
function utils.wait_for(splash, condition)

while not condition() do
splash:wait(0.05)

end
end

return utils

Usage:

local utils = require("utils")

function main(splash)
splash:go(splash.args.url)

-- wait until <h1> element is loaded
utils.wait_for(splash, function()

return splash:evaljs("document.querySelector('h1') != null")
end)

return splash:html()
end

1.10. Available Lua Libraries 93

Splash Documentation, Release 3.5

Another way to write such module is to add a method to splash object. This can be done by adding a method to its
Splash class - the approach is called “open classes” in Ruby or “monkey-patching” in Python.

-- wait_for.lua

-- Sandbox is not enforced in custom modules, so we can import
-- internal Splash class and change it - add a method.
local Splash = require("splash")

function Splash:wait_for(condition)
while not condition() do

self:wait(0.05)
end

end

-- no need to return anything

Usage:

require("wait_for")

function main(splash)
splash:go(splash.args.url)

-- wait until <h1> element is loaded
splash:wait_for(function()

return splash:evaljs("document.querySelector('h1') != null")
end)

return splash:html()
end

Which style to prefer is up to the developer. Functions are more explicit and composable, monkey patching enables a
more compact code. Either way, require is explicit.

As seen in a previous example, sandbox restrictions for standard Lua modules and functions are not applied in
custom Lua modules, i.e. you can use all the Lua powers. This makes it possible to import third-party Lua modules
and implement advanced features, but requires developer to be careful. For example, let’s use os module:

-- evil.lua
local os = require("os")
local evil = {}

function evil.sleep()
-- Don't do this! It blocks the event loop and has a startup cost.
-- splash:wait is there for a reason.
os.execute("sleep 2")

end

function evil.touch(filename)
-- another bad idea
os.execute("touch " .. filename)

end

-- todo: rm -rf /

return evil

94 Chapter 1. Documentation

http://www.lua.org/manual/5.2/manual.html#6.9

Splash Documentation, Release 3.5

1.11 Splash and Jupyter

Splash provides a custom Jupyter (previously known as IPython) kernel for Lua. Together with Jupyter notebook
frontend it forms an interactive web-based development environment for Splash Scripts with syntax highlighting,
smart code completion, context-aware help, inline images support and a real live WebKit browser window with Web
Inspector enabled, controllable from a notebook.

1.11.1 Installation

To install Splash-Jupyter using Docker, run:

$ docker pull scrapinghub/splash-jupyter

Then start the container:

$ docker run -p 8888:8888 -it scrapinghub/splash-jupyter

Note: Without -it flags you won’t be able to stop the container using Ctrl-C.

This command should print something like this:

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:

http://localhost:8888/?token=e2435ae336d22b23d5e868d03ce728bc33e73b6159e391ba

To view Jupyter, open the suggested location in a browser. It should display an usual Jupyter Notebook overview page.

Note: In older Docker setups (e.g. with boot2docker on OS X) you may have to replace ‘localhost’ with the IP
address Docker is available on, e.g. a result of boot2docker ip in case of boot2docker or docker-machine
ip <your machine> in case of docker-machine.

Click “New” button and choose “Splash” in the drop-down list - Splash Notebook should open.

Splash Notebook looks like an IPython notebook or other Jupyter-based notebooks; it allows to run and develop Splash
Lua scripts interactively. For example, try entering splash:go("you-favorite-website") in a cell, execute
it, then enter splash:png() in the next cell and run it as well - you should get a screenshot of the website displayed
inline.

1.11.2 Persistence

By default, notebooks are stored in a Docker container; they are destroyed when you restart an image. To persist
notebooks you can mount a local folder to /notebooks. For example, let’s use current folder to store the notebooks:

$ docker run -v `/bin/pwd`/notebooks:/notebooks -p 8888:8888 -it splash-jupyter

1.11.3 Live Webkit window

To view Live Webkit window with web inspector when Splash-Jupyter is executed from Docker, you will need to pass
additional docker parameters to share the host system’s X server with the docker container

1.11. Splash and Jupyter 95

http://jupyter.org/
http://ipython.org/
http://ipython.org/notebook.html
http://boot2docker.io/
https://docs.docker.com/machine/

Splash Documentation, Release 3.5

First you need allow docker to connect to the X server, using:

$ xhost +local:docker

And then use the --disable-xvfb command line flag to run Splash-Jupyter:

$ docker run -e DISPLAY=unix$DISPLAY \
-v /tmp/.X11-unix:/tmp/.X11-unix \
-v $XAUTHORITY:$XAUTHORITY \
-e XAUTHORITY=$XAUTHORITY \
-p 8888:8888 \
-it scrapinghub/splash-jupyter --disable-xvfb

Note: The command above is tested on Linux.

On Windows you can use VcXsrv:

$ docker run -e DISPLAY=$DISPLAY ^
-p 8888:8888 ^
-it scrapinghub/splash-jupyter --disable-xvfb

1.11.4 From Notebook to HTTP API

After you finished developing the script using Splash Notebook, you may want to convert it to a form suitable for
submitting to Splash HTTP API (see execute and run).

To do that, copy-paste (or download using “File -> Download as -> .lua”) all relevant code. For run endpoint add
return statement to return the final result:

-- Script code goes here,
-- including all helper functions.
return {...} -- return the result

For execute add return statement and put the code inside function main(splash):

function main(splash)
-- Script code goes here,
-- including all helper functions.
return {...} -- return the result

end

To make the script more generic you can use splash.args instead of hardcoded constants (e.g. for page urls). Also,
consider submitting several requests with different arguments instead of running a loop in a script if you need to visit
and process several pages - it is an easy way to parallelize the work.

There are some gotchas:

1. When you run a notebook cell and then run another notebook cell there is a delay between runs; the effect is
similar to inserting splash:wait calls at the beginning of each cell.

2. Regardless of sandbox settings, scripts in Jupyter notebook are not sandboxed. Usually it is not a problem, but
some functions may be unavailable in HTTP API if sandbox is enabled.

96 Chapter 1. Documentation

https://dev.to/darksmile92/run-gui-app-in-linux-docker-container-on-windows-host-4kde

Splash Documentation, Release 3.5

1.12 FAQ

1.12.1 How to send requests to Splash HTTP API?

The recommended way is to use application/json POST requests, because this way you can preserve data
types, and there is no limit on request size.

Python, using requests library

requests library is a popular way to send HTTP requests in Python. It provides a shortcut for sending JSON POST
requests. Let’s send a simple Lua script to run endpoint:

import requests

script = """
splash:go(args.url)
return splash:png()
"""
resp = requests.post('http://localhost:8050/run', json={

'lua_source': script,
'url': 'http://example.com'

})
png_data = resp.content

Python + Scrapy

Scrapy is a popular web crawling and scraping framework. For Scrapy + Splash integration use scrapy-splash library.

R language

There is a third-party library which makes it easy to use Splash in R language: https://github.com/hrbrmstr/splashr

curl

curl --header "Content-Type: application/json" \
-X POST \
--data '{"url":"http://example.com","wait":1.0}' \
'http://localhost:8050/render.html'

httpie

httpie is a command-line utility for sending HTTP requests; it has a nice API for sending for JSON POST requests:

http POST localhost:8050/render.png url=http://example.com width=200 > img.png

1.12. FAQ 97

http://docs.python-requests.org/en/master/
https://scrapy.org/
https://scrapy.org/
https://github.com/scrapy-plugins/scrapy-splash
https://github.com/hrbrmstr/splashr
https://httpie.org

Splash Documentation, Release 3.5

HTML

You can embed Splash results directly in HTML pages. This is not the best, as you’ll be rendering the website each
time this HTML page is opened. But still, you can do this:

1.12.2 I’m getting lots of 504 Timeout errors, please help!

HTTP 504 error means a request to Splash took more than timeout seconds to complete (30s by default) - Splash aborts
script execution after the timeout. To override the timeout value pass ‘timeout’ argument to the Splash endpoint you’re
using.

Note that the maximum allowed timeout value is limited by the maximum timeout setting, which is by default 60
seconds. In other words, by default you can’t pass ?timeout=300 to run a long script - an error will be returned.

Maximum allowed timeout can be increased by passing --max-timeout option to Splash server on startup (see
Passing Custom Options):

$ docker run -it -p 8050:8050 scrapinghub/splash --max-timeout 3600

If you’ve installed Splash without Docker, use

$ python3 -m splash.server --max-timeout 3600

The next question is why a request can need 10 minutes to render. There are 3 common reasons:

1. Slow website

A website can be really slow, or it can try to get some remote resources which are really slow.

There is no way around increasing timeouts and reducing request rate if the website itself is slow. However, often the
problem lays in unreliable remote resources like third-party trackers or advertisments. By default Splash waits for all
remote resources to load, but in most cases it is better not to wait for them forever.

To abort resource loading after a timeout and give the whole page a chance to render use resource timeouts. For
render.*** endpoints use ‘resource_timeout’ argument; for execute or run use either splash.resource_timeout or
request:set_timeout (see splash:on_request).

It is a good practive to always set resource_timeout; something similar to resource_timeout=20 often works
well.

2. Splash Lua script does too many things

When a script fetches many pages or uses large delays then timeouts are inevitable. Sometimes you have to run such
scripts; in this case increase --max-timeout Splash option and use larger timeout values.

But before increasing the timeouts consider splitting your script into smaller steps and sending them to Splash individ-
ually. For example, if you need to fetch 100 websites, don’t write a Splash Lua script which takes a list of 100 URLs
and fetches them - write a Splash Lua script that takes 1 URL and fetches it, and send 100 requests to Splash. This
approach has a number of benefits: it makes scripts more simple and robust and enables parallel processing.

98 Chapter 1. Documentation

Splash Documentation, Release 3.5

3. Splash instance is overloaded

When Splash is overloaded it may start producing 504 errors.

Splash renders requests in parallel, but it doesn’t render them all at the same time - concurrency is limited to a value
set at startup using --slots option. When all slots are used a request is put into a queue. The thing is that a timeout
starts to tick once Splash receives a request, not when Splash starts to render it. If a request stays in an internal queue
for a long time it can timeout even if a website is fast and splash is capable of rendering the website.

To increase rendering speed and fix an issue with a queue it is recommended to start several Splash instances and use
a load balancer capable of maintaining its own request queue. HAProxy has all necessary features; check an example
config here. A shared request queue in a load balancer also helps with reliability: you won’t be loosing requests if a
Splash instance needs to be restarted.

Note: Nginx (which is another popular load balancer) provides an internal queue only in its commercial version,
Nginx Plus.

1.12.3 How to run Splash in production?

Easy Way

If you want to get started quickly take a look at Aquarium (which is a Splash setup without many of the pitfalls) or use
a hosted solution like ScrapingHub’s.

Don’t forget to use resource timeouts in your client code (see 1. Slow website). It also makes sense to retry a couple
of times if Splash returns 5xx error response.

Hard Way

If you want to create your own production setup, here is a small non-exhaustive checklist:

• Splash should be daemonized and started on boot;

• in case of failures or segfaults Splash must be restarted;

• memory usage should be limited;

• several Splash instances should be started to use all CPU cores and/or multiple servers;

• requests queue should be moved to the load balancer to make rendering more robust (see 3. Splash instance is
overloaded).

Of course, it is also good to setup monitoring, configuration management, etc. - all the usual stuff.

To daemonize Splash, start it on boot and restart on failures one can use Docker: since Docker 1.2 there are
--restart and -d options which can be used together. Another way to do that is to use standard tools like up-
start, systemd or supervisor.

Note: Docker --restart option won’t work without -d.

Splash uses an unbound in-memory cache and so it will eventually consume all RAM. A workaround is to restart
the process when it uses too much memory; there is Splash --maxrss option for that. You can also add Docker
--memory option to the mix.

1.12. FAQ 99

http://www.haproxy.org/
https://github.com/scrapinghub/splash/blob/master/splash/examples/splash-haproxy.conf
https://www.nginx.com/
https://www.nginx.com/products/
https://github.com/TeamHG-Memex/aquarium
http://scrapinghub.com/splash/

Splash Documentation, Release 3.5

In production it is a good idea to pin Splash version - instead of scrapinghub/splash it is usually better to use
something like scrapinghub/splash:2.0.

A command for starting a long-running Splash server which uses up to 4GB RAM and daemonizes & restarts itself
could look like this:

$ docker run -d -p 8050:8050 --memory=4.5G --restart=always scrapinghub/splash:3.1 --
→˓maxrss 4000

You also need a load balancer; for example configs check Aquarium or an HAProxy config in Splash repository.

Ansible Way

Ansible role for Splash is available via third-party project: https://github.com/nabilm/ansible-splash.

1.12.4 Website is not rendered correctly

Sometimes websites are not rendered correctly by Splash. Common reasons:

• not enough wait time; solution - wait more (see e.g. splash:wait);

• non-working localStorage in Private Mode. This is a common issue e.g. for websites based on AngularJS. If
rendering doesn’t work, try disabling Private mode (see How do I disable Private mode?).

• Sometimes content is lazy-loaded, or loaded only in a response for user actions (e.g. page scrolling). Try
increasing viewport size to make everything visible, and waiting a bit after that (see splash:set_viewport_full).
You may also have to simulate mouse and keyboard events (see Interacting with a page).

• Missing features in WebKit used by Splash. Splash now uses https://github.com/annulen/webkit, which is much
more recent than WebKit provided by Qt; we’ll be updating Splash WebKit as annulen’s webkit develops.

• Website may show a different content based on User-Agent header or based on IP address. Use
splash:set_user_agent to change the default User-Agent header. If you’re running Splash in a cloud and not
getting good results, try reproducing it locally as well, just in case results depend on IP address.

• Website requires Flash. You can enable it using splash.plugins_enabled.

• Website requires IndexedDB. Enable it using splash.indexeddb_enabled.

• If there is no video or other media, use html5_media Splash HTTP argument or splash.html5_media_enabled
property to enable HTML5 media, or splash.plugins_enabled to enable Flash.

• Website has compatibility issues with Webkit version Splash is using. A quick (though not precise) way to check
it is to try opening a page in Safari.

1.12.5 Splash crashes

Common reasons:

• Qt or WebKit bugs which cause Splash to hang or crash. Unfortunately, they can be hard to fix in Splash, as
Splash is relying on these projects. That said, often the whole website works, but some specific .js (or other) file
causes problems. In this case you can try these steps:

– Run Splash locally with v2 verbosity, e.g. docker run -it -p8050:8050 scrapinghub/
splash -v2

– Go to http://0.0.0.0:8050 and paste your url (with the default Lua script), or try to reproduce the
issue otherwise, using this Splash instance.

100 Chapter 1. Documentation

https://github.com/TeamHG-Memex/aquarium
https://github.com/scrapinghub/splash/blob/master/examples/splash-haproxy.conf
https://www.ansible.com/
https://github.com/nabilm/ansible-splash
https://github.com/annulen/webkit
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API

Splash Documentation, Release 3.5

– If Splash instance failed and stopped (you reproduced the issue), check the log in terminal. Pay special
attention to network activity. For example, if the last response was for an url like https://example.
com/static/myscript123.min.js with JS, we may suspect that this particular JavaScript file
contains some code which makes Splash crash.

– Filter out this .js file using splash:on_request:

function main(splash, args)
splash:on_request(function(request)

if request.url:find('myscript123') ~= nil then
request:abort()

end
end)
assert(splash:go(args.url))
assert(splash:wait(0.5))
return {

html = splash:html(),
png = splash:png(),
har = splash:har(),

}
end

Alternatively, use Request Filters to filter it out.

• Some of the crashes can be solved by disabling HTML 5 media (splash.html5_media_enabled property or
html5_media HTTP API argument) - note it is disabled by default.

• Sometimes Splash may crash, and you get a Python traceback in the log. In this case it is likely to be a Splash
bug which can be fixed in Splash. Please report it at https://github.com/scrapinghub/splash/issues, pasting the
whole traceback and parameters of the request you’re making, if possible (URL, endpoint or Lua script used).

If you have troubles making Splash work, consider asking a question at https://stackoverflow.com. If you think it is a
Splash bug, raise an issue at https://github.com/scrapinghub/splash/issues.

1.12.6 How do I disable Private mode?

With Splash>=2.0, you can disable Private mode (which is “on” by default). There are two ways to go about it:

• at startup, with the --disable-private-mode argument, e.g., if you’re using Docker:

$ sudo docker run -it -p 8050:8050 scrapinghub/splash --disable-private-mode

• at runtime when using the /execute endpoint and setting splash.private_mode_enabled attribute to false

Note that if you disable private mode then browsing data may persist between requests (cookies are not affected
though). If you’re using Splash in a shared environment it could mean some information about requests you’re making
can be accessible for other Splash users.

You may still want to turn Private mode off because in WebKit localStorage doesn’t work when Private mode is
enabled, and it is not possible to provide a JavaScript shim for localStorage. So for some websites (AngularJS websites
are common offenders) you may have to turn Private model off.

1.12.7 Why was Splash created in the first place?

Please refer to this great answer from kmike on reddit.

1.12. FAQ 101

https://github.com/scrapinghub/splash/issues
https://stackoverflow.com
https://github.com/scrapinghub/splash/issues
https://www.reddit.com/r/Python/comments/2xp5mr/handling_javascript_in_scrapy_with_splash/cp2vgd6

Splash Documentation, Release 3.5

1.12.8 Why are CSS styling and images missing from the .har archive?

Webkit has an in-memory cache (also called page-cache) and a network cache.

If you tell splash to load two pages that share some common resources, the second page’s .har file will not contain the
shared resources because they were cached through the page cache.

If you want the .har file to contain all the resources for that page, run splash with the command-line option
--disable-browser-caches.

1.12.9 Why does Splash use Lua for scripting, not Python or JavaScript?

Check this GitHub Issue for the motivation.

1.12.10 render.html result looks broken in a browser

When you check http://<splash-server>:8050/render.html?url=<url> in a browser it is likely
stylesheets & other resources won’t load properly. It happens when resource URLs are relative - the browser will
resolve them as relative to http://<splash-server>:8050/render.html?url=<url>, not to url. This
is not a Splash bug, it is a standard browser behaviour.

If you just want to check how the page looks like after rendering use render.png or render.jpeg endpoints. If screenshot
is not an option and you want to display html with images, etc. using a browser then you may post-process the HTML
and add an appropriate <base> HTML tag to the page.

baseurl Splash argument can’t help here. It allows to render a page located at one URL as if it is located at another
URL. For example, you can host a copy of page HTML on your server, but use baseurl of the original page. This way
Splash will resolve relative URLs as relative to original page URL, so that you can get e.g. a proper screenshot or
execute proper JavaScript code.

But by passing baseurl you’re instructing Splash to use it, not your browser. It doesn’t change relative links to
absolute in DOM, it makes Splash to treat them as relative to baseurl when rendering.

Changing links to absolute in DOM tree is not what browsers do when base url is applied - e.g. if you check href
attribute using JS code it will still contain relative value even if <base> tag is used. render.html returns DOM
snapshot, so the links are not changed.

When you load render.html result in a browser it is your browser who resolves relative links, not Splash, so they are
resolved incorrectly.

1.13 Contributing to Splash

Splash is free & open source. Development happens at GitHub: https://github.com/scrapinghub/splash

1.13.1 Testing Suite

The recommended way to execute Splash testing suite is to use a special testing Docker container.

1. First, create a base Splash image named “splash”. If you’re not customizing Splash dependencies, and your
changes are based on Splash master branch, you can use scrapinghub/splash:master image:

102 Chapter 1. Documentation

https://webkit.org/blog/427/webkit-page-cache-i-the-basics/
http://doc.qt.io/qt-5/qnetworkrequest.html#CacheLoadControl-enum
https://github.com/scrapinghub/splash/issues/117
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/base
https://github.com/scrapinghub/splash
http://travis-ci.org/scrapinghub/splash

Splash Documentation, Release 3.5

docker pull scrapinghub/splash:master
docker tag scrapinghub/splash:master splash

If you’ve changed Splash dependencies (Python-level or system-level) then you have to build Splash image from
scratch. Run the following command from the source checkout:

docker build -t splash .

It can take a while (maybe half an hour). Alternatively, you can temporarily change dockerfiles/tests/
Dockerfile or setup.py to install new dependencies.

2. Create a testing Docker image:

docker build -t splash-tests -f dockerfiles/tests/Dockerfile .

Testing Docker image is based on splash docker image, so you need to have an image called splash - we
created such image at step (1).

3. Run tests inside this testing image:

docker run --rm -it splash-tests

You can also pass pytest command-line arguments in the command above. For example, you can select only a
subset of tests to execute (SandboxTest test case in this example):

docker run --rm -it splash-tests -k SandboxTest

If you’ve changed Splash source code and want to re-run tests, repeat steps (2) and (3). Step (2) should take much less
time now. Repeating step (1) is only necessary if you’re adding new dependencies to Splash (Python or system-level),
or if you want to update the base Splash image (e.g. after a recent rebase on Splash master).

There is a script in the root of Splash repository (runtests-docker.sh) which combines steps (2) and (3);
you can use it during development to run tests: change Splash source code or testing source code, then run ./
runtests-docker.sh from source checkout.

1.14 Implementation Details

This section contains information useful if you want to understand Splash codebase.

1.14.1 JavaScript <-> Python <-> Lua intergation

Lua and JavaScript are not connected directly; they communicate through Python.

Python <-> Lua is handled using lupa library. splash.qtrender_lua.command() decorator handles most of
Python <-> Lua integration.

Python <-> JavaScript is handled using custom serialization code. QT host objects are not used (with a few exceptions).
Instead of this JavaScript results are sanitized and processed in Python; Python results are encoded to JSON and
decoded/processed in JavaScript.

Python -> Lua

Data is converted from Python to Lua in two cases:

1.14. Implementation Details 103

Splash Documentation, Release 3.5

1. method of an exposed Python object returns a result (most common example is a method of splash Lua
object);

2. Python code calls Lua function with arguments - it could be e.g. an on_request callback.

Conversion rules:

• Basic Python types are converted to Lua: strings -> Lua strings, lists and dicts -> Lua tables, numbers -> Lua
numbers, None -> nil(?).

This is handled using splash.lua_runtime.SplashLuaRuntime.python2lua() method. For at-
tributes exposed to Lua this method is called manually; for return results of Python functions / methods it
is handled by splash.qtrender_lua.emits_lua_objects() decorator. Methods decorated with
@command use splash.qtrender_lua.emits_lua_objects internally, so a Python method deco-
rated with @command decorator may return Python result in its body, and the final result would be a Lua object.

• If there is a need to expose a custom Python object to Lua then a subclass of splash.qtrender_lua.
BaseExposedObject is used; it is wrapped to a Lua table using utilities from wraputils.lua. Lua table
exposes allowlisted attributes and methods of the object using metatable, and disallows access to all other
attributes.

• Other than that, there is no automatic conversion. If something is not converted then it is available for Lua as an
opaque userdata object; access to methods and attributes is disabled by a sandbox.

• To prevent wrapping method may return splash.lua.PyResult instance.

Lua -> Python

Lua -> Python conversion is needed in two cases:

1. Lua code calls Python code, passing some arguments;

2. Python code calls Lua code and wants a result back.

• Basic Lua types are converted to Python using splash.lua_runtime.SplashLuaRuntime.
lua2python(). For method arguments lua2python is called by splash.qtrender_lua.
decodes_lua_arguments() decorator; @command decorator uses decodes_lua_arguments inter-
nally.

• Python objects which were exposed to Lua (BaseExposedObject subclasses) are not converted back. By default
they raise an error; with decode_arguments=False they are available as opaque Lua (lupa) table objects.

splash.qtrender_lua.is_wrapped_exposed_object() can be used to check if a lupa object is
a wrapped BaseExposedObject instance; obj.unwrapped() method can be used to access the underlying Python
object.

JavaScript -> Python

To get results from JavaScript to Python they are converted to primitive JSON-serializable types first. QtWebKit host
objects are not used. Objects of unknown JavaScript types are discared, max depth of result is limited.

JavaScript -> Python conversion utilities reside in

• splash.jsutils module - JavaScript side, i.e. sanitizing and encoding; two main functions are
SANITIZE_FUNC_JS and STORE_DOM_ELEMENTS_JS;

• splash.browser_tab.BrowserTab.evaljs() method - Python side, i.e. decoding of the result.

For most types (objects, arrays, numbers, strings) conversion method is straightforward; the most tricky case is a
reference to DOM nodes.

104 Chapter 1. Documentation

Splash Documentation, Release 3.5

For top-level DOM nodes (i.e. a result is a DOM node or a NodeList) a node is stored in a special window attribute,
and generated id is returned to Python instead. All other DOM nodes are discarded - returning a Node or a NodeList as
a part of data structure is not supported at the moment. STORE_DOM_ELEMENTS_JS processes Node and NodeList
objects; SANITIZE_FUNC_JS sanitizes the result (handles all other data types, drops unsupported data).

In Python HTMLElement objects are created for DOM nodes; they contain node_id attribute with id returned by
JavaScript; it allows to fetch the real Node object in JavaScript. This is handled by splash.browser_tab.
BrowserTab.evaljs().

Python -> JavaScript

There are two cases Python objects are converted to JavaScript objects:

1. functions created with splash:jsfunc() are called with arguments;

2. methods of HtmlElement which wrap JS functions are called with arguments.

The conversion is handled either by splash.html_element.escape_js_args() or by splash.
jsutils.escape_js().

• escape_js just encodes Python data to JSON and removes quotes; the result can be used as literal represen-
tation of argument values, i.e. added to a JS function call using string formatting.

• escape_js_args is similar to escape_js, but it handles splash.html_element.HTMLElement
instances by replacing them with JS code to access stored nodes.

1.15 Changes

1.15.1 3.5 (2020-06-16)

• Upgraded some dependencies, fixing some crashes: * qtwebkit 5.212.0-alpha-4 * Qt 5.14.1 * PyQt 5.14.2 *
PyQtWebEngine 5.14.0 * SIP 4.19.22

• It is now possible to build Splash with a custom qtwebkit binary or build

• Improved the error message about out-of-range viewports

• Enabled logs on Jupyter Notebook

• Fixed a few typos in the documentation

• Fixed Qt installation on Docker after upstream changes to the installer

1.15.2 3.4.1 (2020-01-09)

HTTP2 support is now disabled by default when using the default Splash engine, WebKit. We discovered that it
does not work properly on some websites, which results in network399 errors or incorrect rendering (if those
network399 errors happen for HTML resources such as style of script files).

It can be enabled with the http2 argument, and with request:set_http2_enabled or splash.http2_enabled in Lua scripts.

1.15.3 3.4 (2019-10-25)

In this release qtwebkit is updated to a more recent version. It is still the same rendering engine, but with some bugs
fixed (e.g. handling of redirects where # is present), and with HTTP2 support enabled.

1.15. Changes 105

Splash Documentation, Release 3.5

In addition to webkit, Splash 3.4 got an experimental Chromium support (v73.0.3683.105); it can be enabled per-
request using engine argument of render.html, render.png and render.jpeg endpoints: engine=chromium. It is in
pre-alpha stage, and not suggested to use in production: many (most) features don’t work, there are known bugs.

Main new features:

• Splash now supports HTTP2, and it’s enabled by default. It can be disabled with http2 argument, and with
request:set_http2_enabled or splash.http2_enabled in Lua scripts.

• new --dont-log-args startup option allows to replace certain argument values with "***" in
logs. Use it for sensitive data or for arguments with long values which you don’t want in logs, e.g.
--dont-log-args=lua_source,mypassword. Note that sensitive data may still appear in logs, e.g. if
you pass it via GET parameters instead of POST.

Other improvements and bug fixes:

• --browser-engines startup option allows to disable browser engines globally;

• Max allowed viewport size is increased.

• For requests which are cancelled (e.g. because client closed a connection) GlobalTimeoutError error no longer
appears in logs; it is CancelledError now instead.

• In case of timeouts, error dict returned to the user now contains “remaining” field with the time remaining, in
seconds. It should be negative in most cases (no time remaining => timeout happens). Requests are cancelled
not at exact timeout time, there is a small difference, and “remaining” field gives a visibility into that.

• Better log messages on segfaults (faulthandler is enabled).

• More robust handling of internal errors in the API.

• DelayedCall objects are now tracked.

• Fixed incorrect exception when error happens in splash:autoload() script.

• Dockerfile is rewritten to use multi-stage builds; provision.sh script is split into several smaller scripts.
This makes development easier, e.g. large downloads (qt, etc.) are now cached.

• Testing improvements.

Dependency updates:

• qtwebkit is updated to 5.212/1570542016 snapshot.

• Qt is updated to 5.13.1; PyQt is updated to 5.13.1.

• Ubuntu 18.04 is used as the base docker image.

• Splash now uses Python 3.6.

• Twisted is updated to 19.7.0.

1.15.4 3.3.1 (2019-02-21)

• Fix a crash in splash:wait_for_resume - Splash used to crash when resume() or error() are called more
than once, e.g. by delayed JS code;

• new FAQ section about debugging Splash crashes.

1.15.5 3.3 (2019-02-06)

Backwards incompatible:

106 Chapter 1. Documentation

Splash Documentation, Release 3.5

• --manhole support is dropped for now: it was untested and not really documented, and it stopped working
after software upgrades;

• default --slots value is now 20 instead of 50 (which is still too high for most practical tasks).

New features:

• splash:on_navigation_locked allows to register a function to be called before a request is discarded when navi-
gation is locked.

• new --disable-browser-caches command-line option allows to disable browser caching. See Why are
CSS styling and images missing from the .har archive? for an use case.

• request_body and splash.request_body_enabled allow to enable request bodies in HAR output and
splash:on_response callbacks.

Bug fixes:

• fixed crash on pages which call window.prompt, prompts are discarded now;

• fixed response.request.method and response.request.url in splash:on_response callbacks;

• fixed an edge case with logging causing an exception;

• proper log level is used for “image is trimmed vertically” message.

Other improvements:

• qt5reactor is upgraded to 0.5 - this should slightly reduce idle CPU usage;

• Twisted is upgraded from 16.1.0 to 18.9.0;

• PyQt5 is upgraded from 5.9 to 5.9.2;

• Pillow is upgraded to 5.4.1 - as a side effect, taking large JPEG screenshots should use slightly less RAM;

• a workaround for JPEG + transparency on a web page is removed, as it seems to do nothing;

• Splash-Jupyter is updated to latest jupyter (ipykernel==5.1.0, notebook==5.7.4);

• testing improvements;

• typo fixes and documentation improvements.

1.15.6 3.2 (2018-02-15)

HTML5 media (e.g. <video> tags playback) is disabled by default in this release, because it was a source of some of
Splash crashes. This is backwards incompatible, as it can affect rendering. If you need old behavior (it was working
on sites you’re crawling), use either html5_media=1 HTTP API argument or splash.html5_media_enabled attribute to
re-enable HTML5 media.

Other changes:

• html5_media HTTP API argument and splash.html5_media_enabled attribute allow to enable/disable HTML5
media;

• splash.webgl_enabled attribute allows to enable/disable WebGL;

• splash.media_source_enabled attribute allows to enable/disable Media Source Extension API;

• --xvbf_screen_size Splash startup argument allows to customize xvfb screen size (it could be helpful
sometimes to have it matching with a viewport size you’re using in a crawl);

• documentation and test improvements.

1.15. Changes 107

Splash Documentation, Release 3.5

1.15.7 3.1 (2018-01-31)

• IndexedDB can be enabled by setting splash.indexeddb_enabled attribute to true in a Lua script;

• Bengali and Assamese fonts are added to the default Docker image;

• splash:runjs and splash:autoload are fixed for scripts which end with a line comment (//);

• --ip startup argument allows to set an IP address Splash listens on;

• Documentation and testing improvements.

1.15.8 3.0 (2017-07-06)

WebKit is upgraded in this Splash release - Splash now uses https://github.com/annulen/webkit instead of official
(deprecated and unsupported) QtWebKit. Splash rendering engine is now similar to Safari from mid-2016. It fixes a
lot of problems with compatibility, speed and quality of rendering.

Backwards incompatible changes:

• there are rendering changes, as WebKit is upgraded;

• wait argument for render.??? endpoints no longer increases timeout automatically. If you increase timeout by
wait value requests to render.??? endpoints will work as before. Also, 30s limit (10s prior to Splash 2.3.3) for
wait argument is removed - you can set any wait value, as soon as it is smaller than timeout.

• Python 2 support is removed. You can still use Python 2 to make requests to Splash, but Splash server itself now
runs on Python 3.4+.

• element:mouse_click and element:mouse_hover now click/hover element center by default, not element top-
left corner. Also, they scroll to the element being clicked/hovered if needed, to make it work when an ele-
ment is outside the current viewport. These methods are now async; they wait for events to propagate (unlike
splash:mouse_click and splash:mouse_hover).

New features:

• An alternative way to access splash.args: it can be received as a second argument of main function (i.e.
function main(splash, args) ...);

• new run endpoint is an alternative to execute endpoint; it is almost the same, but it doesn’t require putting code
into function main(splash, args) ... end;

• new splash.scroll_position attribute allows to get and set window scroll position;

• Qt is upgraded to 5.9.1, PyQt is upgraded to 5.9;

• official Docker image now uses Ubuntu 16.04.

Other changes and bug fixes:

• default timeout limit (i.e. max allowed value) is increased from 60s to 90s; default timeout value is still 30s.

• Lua sandbox: instruction count limit is increased further (10M instructions instead of 5M)

• new docs section: Splash Lua API Overview;

• new FAQ entries: How to send requests to Splash HTTP API?, Website is not rendered correctly;

• Fixed an issue with splash:runjs: previously in case of an error it returned a table with error information. This
approach didn’t play well with Lua assert, so now a string with an error message is returned instead. It was
always documented that a string is returned by splash:runjs as a second value when error happens.

• Fixed element:png and element:jpeg for elements outside curent viewport;

108 Chapter 1. Documentation

https://github.com/annulen/webkit

Splash Documentation, Release 3.5

• DOM attributes and methods are documented as accessible on elements directly, without .node -
i.e. splash:select('.my-element'):getAttribute('foo') instead of splash:select('.
my-element').node:getAttribute('foo');

• exposed element:scrollIntoViewIfNeeded() method;

• improved validation of headers arguments in splash:go, splash:set_custom_headers, splash:http_get and
splash:http_post;

• Splash shouldn’t crash if an exception happens while creating a request in network manager;

• cleanup of JS event handlers is improved;

• documentation and testing improvements.

1.15.9 2.3.3 (2017-06-07)

• WebGL support in default Docker image;

• Maximum value for wait argument in render.??? endpoints is increased from 10 seconds to 30 seconds;

• Lua sandbox limits (RAM and CPU) are raised;

• documentation and testing improvements.

1.15.10 2.3.2 (2017-03-03)

• security fix: Xvfb shouldn’t listen to tcp.

1.15.11 2.3.1 (2017-01-24)

• Fixed proxy authentication for proxies set using ‘proxy’ HTTP argument;

• minor documentation fixes.

1.15.12 2.3 (2016-12-01)

This release adds lots of scraping helpers to Splash: CSS selectors, form filling, easy access to HTML node attributes.
Scraping helpers were implemented by Michael Manukyan as a Google Summer of Code 2016 project.

New features:

• splash:select and splash:select_all methods which allow to execute CSS selectors;

• new Element object which wraps JavaScript DOM node and allows to interact with it.

1.15.13 2.2.2 (2016-11-10)

This is a bug fix release:

• Splash-Jupyter is fixed;

• fix an issue with non-ascii HTTP status messages;

• upgrade Pillow to 3.4.2.

1.15. Changes 109

Splash Documentation, Release 3.5

1.15.14 2.2.1 (2016-10-17)

This is a bug fix release:

• fix Splash UI in Chrome when serving from localhost;

• upgrade adblockparser to 0.7 to support recent easylist filters;

• upgrade Pillow to 3.3.3.

1.15.15 2.2 (2016-09-10)

New features:

• new splash:send_keys and splash:send_text methods allow to send native keyboard events to browser;

• new splash:with_timeout method allows to limit execution time of blocks of code;

• new splash.plugins_enabled attribute which allows to enable Flash; Flash is now available in Docker image, but
it is still disabled by default.

• new splash.response_body_enabled attribute, request:enable_response_body method and response_body argu-
ment allows to access and export response bodies.

Bug fixes:

• fixed handling of splash:call_later, splash:on_request, splash:on_response and splash:on_response_headers
callback arguments;

• fixed cleanup of various callbacks;

• fixed save_args in Python 2.x;

Other changes:

• internal cleanup of Lua <-> Python interaction;

• Pillow library is updated in Docker image;

• HarViewer is upgraded to a recent version.

1.15.16 2.1 (2016-04-20)

New features:

• ‘region’ argument for splash:png and splash:jpeg methods allow to take screenshots of parts of pages;

• save_args and load_args parameters allow to save network traffic by caching large request arguments inside
Splash server;

• new splash:mouse_click, splash:mouse_press, splash:mouse_release and splash:mouse_hover methods for
sending mouse events to web pages.

Bug fixes:

• User-Agent is set correctly for requests with baseurl;

• “download” links in Splash UI are fixed;

• an issue with ad blockers preventing Splash UI to work is fixed.

110 Chapter 1. Documentation

Splash Documentation, Release 3.5

1.15.17 2.0.3 (2016-03-04)

This is a bugfix release:

• Splash Notebook is fixed to work with recent ipykernel versions;

• segfaults in adblock middleware are fixed;

• adblock parsing issues are fixed by upgrading adblockparser to v0.5;

• fixed handling of adblock rules with ‘domain’ option: domain is now extracted from the page URL, not neces-
sarily from ‘url’ Splash argument.

1.15.18 2.0.2 (2016-02-26)

This is a bugfix release:

• an issue which may cause segfaults is fixed.

1.15.19 2.0.1 (2016-02-25)

This is a bugfix release:

• XSS in HTTP UI is fixed;

• Splash-Jupyter docker image is fixed.

1.15.20 2.0 (2016-02-21)

Splash 2.0 uses Qt 5.5.1 instead of Qt 4; it means the rendering engine now supports more HTML5 features and is
more modern overall. Also, the official Docker image now uses Python 3 instead of Python 2. This work is largely
done by Tarashish Mishra as a Google Summer of Code 2015 project.

Splash 2.0 release introduces other cool new features:

• many Splash HTTP UI improvements;

• better support for binary data;

• built-in json and base64 libraries;

• more control for result serialization (support for JSON arrays and raw bytes);

• it is now possible to turn Private mode OFF at startup using command-line option or at runtime using
splash.private_mode_enabled attribute;

• _ping endpoint is added;

• cookie handling is fixed;

• downloader efficiency is improved;

• request processing is stopped when client disconnects;

• logging inside callbacks now uses proper verbosity;

• sandbox memory limit for user objects is increased to 50MB;

• some sandboxing issues are fixed;

• splash:evaljs and splash:jsfunc results are sanitized better;

1.15. Changes 111

Splash Documentation, Release 3.5

• it is possible to pass arguments when starting Splash-Jupyter - it means now you can get a browser window for
splash-jupyter when it is executed from docker;

• proxy authentication is fixed;

• logging improvements: logs now contain request arguments in JSON format; errors are logged;

There are backwards-incompatible changes to Splash Scripting: previously, different Splash methods were return-
ing/receiving inconsistent response and request objects. For example, splash:http_get response was not in the same
format as response received by splash:on_response callbacks. Splash 2.0 uses Request and Response objects con-
sistently. Unfortunately this requires changes to existing user scripts:

• replace resp = splash:http_get(...) and resp = splash:http_post(...) with resp =
splash:http_get(...).info and resp = splash:http_post(...).info. Client code also
may need to be changed: the default encoding of info['content']['text'] is now base64. If you used
resp.content.text consider switching to response.body.

• response object received by splash:on_response_headers and splash:on_response callbacks is changed: in-
stead of response.request write response.request.info.

Serialization of JS objects in splash:jsfunc, splash:evaljs and splash:wait_for_resume is changed: circular objects are
no longer returned, Splash doesn’t try to serialize DOM elements, and error messages are changed.

Splash no longer supports QT-based disk cache; it was disable by default and it usage was discouraged since Splash
1.0, in Splash 2.0 --cache command-line option is removed. For HTTP cache there are better options like Squid.

Another backwards-incompatible change is that Splash-as-a-proxy feature is removed. Please use regular HTTP
API instead of this proxy interface. Of course, Splash will still support using proxies to make requests, these are two
different features.

1.15.21 1.8 (2015-09-29)

New features:

• POST requests support: http_method and body arguments for render endpoints; new splash:go arguments:
body, http_method and formdata; new splash:http_post method.

• Errors are now returned in JSON format; error mesages became more detailed; Splash UI now displays detailed
error information.

• new splash:call_later method which allows to schedule tasks in future;

• new splash:on_response method allows to register a callback to be executed after each response;

• proxy can now be set directly, without using proxy profiles - there is a new proxy argument for render endpoints;

• more detailed splash:go errors: a new “render_error” error type can be reported;

• new splash:set_result_status_code method;

• new splash.resource_timeout attribute as a shortcut for request:set_timeout in splash:on_request;

• new splash:get_version method;

• new splash:autoload_reset, splash:on_response_reset, splash:on_request_reset,
splash:on_response_headers_reset, splash:har_reset methods and a new reset=true argument for
splash:har. They are most useful with Splash-Jupyter.

Bug fixes and improvements:

• fixed an issue: proxies were not applied for POST requests;

• improved argument validation for various methods;

112 Chapter 1. Documentation

http://www.squid-cache.org/

Splash Documentation, Release 3.5

• more detailed logs;

• it is now possible to load a combatibility shim for window.localStorage;

• code coverage integration;

• improved Splash-Jupyter tests;

• Splash-Jupyter is upgraded to Jupyter 4.0.

1.15.22 1.7 (2015-08-06)

New features:

• render.jpeg endpoint and splash:jpeg function allow to take screenshots in JPEG format;

• splash:on_response_headers Lua function and allowed_content_types / forbidden_content_types HTTP argu-
ments allow to discard responses earlier based on their headers;

• splash.images_enabled attribute to enable/disable images from Lua scripts;

• splash.js_enabled attribute to enable/disable JS processing from Lua scripts;

• splash:set_result_header method for setting custom HTTP headers returned to Splash clients;

• resource_timeout argument for setting network request timeouts in render endpoints;

• request:set_timeout(timeout)method (ses splash:on_request) for setting request timeouts from Lua
scripts;

• SOCKS5 proxy support: new ‘type’ argument in proxy profile config files and request:set_proxy method
(ses splash:on_request)

• enabled HTTPS proxying;

Other changes:

• HTTP error detection is improved;

• MS fonts are added to the Docker image for better rendering quality;

• Chinese fonts are added to the Docker image to enable rendering of Chinese websites;

• validation of timeout and wait arguments is improved;

• documentation: grammar is fixed in the tutorial;

• assorted documentation improvements and code cleanups;

• splash:set_images_enabled method is deprecated.

1.15.23 1.6 (2015-05-15)

The main new feature in Splash 1.6 is splash:on_request function which allows to process individual outgoing requests:
log, abort, change them.

Other improvements:

• a new _gc endpoint which allows to clear QWebKit caches;

• Docker images are updated with more recent package versions;

• HTTP arguments validation is improved;

• serving Splash UI under HTTPS is fixed.

1.15. Changes 113

Splash Documentation, Release 3.5

• documentation improvements and typo fixes.

1.15.24 1.5 (2015-03-03)

In this release we introduce Splash-Jupyter - a web-based IDE for Splash Lua scripts with syntax highlighting, auto-
completion and a connected live browser window. It is implemented as a kernel for Jupyter (IPython).

Docker images for Splash 1.5 are optimized - download size is much smaller than in previous releases.

Other changes:

• splash:go() returned incorrect result after an unsuccessful splash:go() call - this is fixed;

• Lua main function can now return multiple results;

• there are testing improvements and internal cleanups.

1.15.25 1.4 (2015-02-10)

This release provides faster and more robust screenshot rendering, many improvements in Splash scripting engine and
other improvements like better cookie handling.

From version 1.4 Splash requires Pillow (built with PNG support) to work.

There are backwards-incompatible changes in Splash scripts:

• splash:set_viewport() is split into splash:set_viewport_size() and splash:set_viewport_full();

• old splash:runjs() method is renamed to splash:evaljs();

• new splash:runjs method just runs JavaScript code without returning the result of the last JS statement.

To upgrade check all splash:runjs() usages: if the returned result is used then replace splash:runjs() with splash:evaljs().

viewport=full argument is deprecated; use render_all=1.

New scripting features:

• it is now possible to write custom Lua plugins stored server-side;

• a restricted version of Lua require is enabled in sandbox;

• splash:autoload() method for setting JS to load on each request;

• splash:wait_for_resume() method for interacting with async JS code;

• splash:lock_navigation() and splash:unlock_navigation() methods;

• splash:set_viewport() is split into splash:set_viewport_size() and splash:set_viewport_full();

• splash:get_viewport_size() method;

• splash:http_get() method for sending HTTP GET requests without loading result to the browser;

• splash:set_content() method for setting page content from a string;

• splash:get_cookies(), splash:add_cookie(), splash:clear_cookies(), splash:delete_cookies() and
splash:init_cookies() methods for working with cookies;

• splash:set_user_agent() method for setting User-Agent header;

• splash:set_custom_headers() method for setting other HTTP headers;

• splash:url() method for getting current URL;

• splash:go() now accepts headers argument;

114 Chapter 1. Documentation

Splash Documentation, Release 3.5

• splash:evaljs() method, which is a splash:runjs() from Splash v1.3.1 with improved error handling (it raises an
error in case of JavaScript exceptions);

• splash:runjs() method no longer returns the result of last computation;

• splash:runjs() method handles JavaScript errors by returning ok, error pair;

• splash:get_perf_stats() method for getting Splash resource usage.

Other improvements:

• –max-timeout option can be passed to Splash at startup to increase or decrease maximum allowed timeout value;

• cookies are no longer shared between requests;

• PNG rendering becomes more efficient: less CPU is spent on compression. The downside is that the returned
PNG images become 10-15% larger;

• there is an option (scale_method=vector) to resize images while painting to avoid pixel-based resize step
- it can make taking a screenshot much faster on image-light webpages (up to several times faster);

• when ‘height’ is set and image is downscaled the rendering is more efficient because Splash now avoids render-
ing unnecessary parts;

• /debug endpoint tracks more objects;

• testing setup improvements;

• application/json POST requests handle invalid JSON better;

• undocumented splash:go_and_wait() and splash:_wait_restart_on_redirects() methods are removed (they are
moved to tests);

• Lua sandbox is cleaned up;

• long log messages from Lua are truncated in logs;

• more detailed error info is logged;

• example script in Splash UI is simplified;

• stress tests now include PNG rendering benchmark.

Bug fixes:

• default viewport size and window geometry are now set to 1024x768; this fixes PNG screenshots with view-
port=full;

• PNG rendering is fixed for huge viewports;

• splash:go() argument validation is improved;

• timer is properly deleted when an exception is raised in an errback;

• redirects handling for baseurl requests is fixed;

• reply is deleted only once when baseurl is used.

1.15.26 1.3.1 (2014-12-13)

This release fixes packaging issues with Splash 1.3.

1.15. Changes 115

Splash Documentation, Release 3.5

1.15.27 1.3 (2014-12-04)

This release introduces an experimental scripting support.

Other changes:

• manhole is disabled by default in Debian package;

• more objects are tracked in /debug endpoint;

• “history” in render.json now includes “queryString” keys; it makes the output compatible with HAR entry
format;

• logging improvements;

• improved timer cancellation.

1.15.28 1.2.1 (2014-10-16)

• Dockerfile base image is downgraded to Ubuntu 12.04 to fix random crashes;

• Debian/buildbot config is fixed to make Splash UI available when deployed from deb;

• Qt / PyQt / sip / WebKit / Twisted version numbers are logged at startup.

1.15.29 1.2 (2014-10-14)

• All Splash rendering endpoints now accept Content-Type: application/json POST requests with
JSON-encoded rendering options as an alternative to using GET parameters;

• headers parameter allows to set HTTP headers (including user-agent) for all endpoints - previously it was
possible only in proxy mode;

• js_source parameter allows to execute JS in page context without application/javascript POST
requests;

• testing suite is switched to pytest, test running can now be parallelized;

• viewport size changes are logged;

• /debug endpoint provides leak info for more classes;

• Content-Type header parsing is less strict;

• documentation improvements;

• various internal code cleanups.

1.15.30 1.1 (2014-10-10)

• An UI is added - it allows to quickly check Splash features.

• Splash can now return requests/responses information in HAR format. See render.har endpoint and har argu-
ment of render.json endpoint. A simpler history argument is also available. With HAR support it is possible to
get timings for various events, HTTP status code of the responses, HTTP headers, redirect chains, etc.

• Processing of related resources is stopped earlier and more robustly in case of timeouts.

• wait parameter changed its meaning: waiting now restarts after each redirect.

116 Chapter 1. Documentation

http://www.softwareishard.com/blog/har-12-spec/

Splash Documentation, Release 3.5

• Dockerfile is improved: image is updated to Ubuntu 14.04; logs are shown immediately; it becomes possible to
pass additional options to Splash and customize proxy/js/filter profiles; adblock filters are supported in Docker;
versions of Python dependencies are pinned; Splash is started directly (without supervisord).

• Splash now tries to start Xvfb automatically - no need for xvfb-run. This feature requires xvfbwrapper
Python package to be installed.

• Debian package improvements: Xvfb viewport matches default Splash viewport, it is possible to change Splash
option using SPLASH_OPTS environment variable.

• Documentation is improved: finally, there are some install instructions.

• Logging: verbosity level of several logging events are changed; data-uris are truncated in logs.

• Various cleanups and testing improvements.

1.15.31 1.0 (2014-07-28)

Initial release.

1.15. Changes 117

	Documentation
	Installation
	Splash HTTP API
	Splash Scripts Tutorial
	Splash Lua API Overview
	Splash Scripts Reference
	Response Object
	Request Object
	Element Object
	Working with Binary Data
	Available Lua Libraries
	Splash and Jupyter
	FAQ
	Contributing to Splash
	Implementation Details
	Changes

